| |
|
开发:
C++知识库
Java知识库
JavaScript
Python
PHP知识库
人工智能
区块链
大数据
移动开发
嵌入式
开发工具
数据结构与算法
开发测试
游戏开发
网络协议
系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程 数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁 |
-> 系统运维 -> Linux系统编程之进程概念 -> 正文阅读 |
|
[系统运维]Linux系统编程之进程概念 |
文章目录1. 什么是进程?在了解进程概念之前,我们需要先知道程序的概念。 程序,是指编译好的二进制文件,这些文件在磁盘上,并不占用系统资源。 进程,指的是一个程序的执行实例,是操作系统分配系统资源的单位,这里的系统资源有CPU时间,内存等。当程序运行起来,产生一个进程。 也就是说,相比于程序,进程是一个动态的概念。 2. 用什么来描述进程?进程信息被放在一个叫做进程控制块的数据结构中,可以理解为进程属性的集合。教材中称为PCB(process control block),不同的操作系统下有不同的PCB,Linux 下的进程控制块是 task_struct。 task_struct是Linux内核的一种数据结构,当一个进程创建时,系统会先将程序加载到内存,同时会将task_struct装载到内存中,在task_struct中包含着进程的信息。 task_struct的内容有Linux中进程控制块PCB-------task_struct结构体结构 - 童嫣 - 博客园 (cnblogs.com),主要分为以下几类: 标示符(PID) : 描述本进程的唯一标示符,用来区别其他进程,本质上是一个非负整数。 进程状态: 任务状态,退出代码,退出信号等。 上下文数据: 进程执行时处理器的寄存器中的数据。 程序计数器: 程序中即将被执行的下一条指令的地址。 文件描述符表,包含很多指向 file 结构体的指针。 优先级: 相对于其他进程的优先级。 其他信息。 3. PID、PPID为了便于管理,操作系统中有父子进程的概念。子进程会继承父进程的属性和权限,而父进程也可以系统地管理子进程。 进程的标志符是PID,是进程的唯一标识,而父进程的标志符是PPID。 要查看进程的父子关系,可以用命令 我们在后台运行一个./test可执行文件,用如下命令查看该进程的父子信息 可以看到,该进程的进程PID为7711,其父进程PPID为29455 要获取进程id和父进程id,可以使用getpid()和getppid()函数: 获取当前进程 ID 获取当前进程的父进程 ID 如运行如下代码后,可以输出该进程的id和父进程id
输出结果: 4. fork函数运行 fork函数是用于创建子进程的一个函数,当父进程调用fork函数后,会创建一个子进程,父子进程代码共享,数据各自开辟空间。 一般情况下,fork之后通常要进行分流
执行结果如下 可以看出,分流之后,父进程执行的是id>0的代码,而子进程执行的是id == 0 的代码,也就是说,fork是有两个返回值的,如果子进程创建成功,fork给父进程返回的是子进程的PID,给子进程返回0。 需要注意的是,子进程执行的是fork之后的代码。这是为什么? 在父进程创建好子进程后,父子进程代码共有,父进程会将自己的数据拷贝给子进程,其中就包括了父进程程序计数器的值。程序计数器内存放的是程序中即将被执行的下一条指令的地址,由于父进程已经执行了fork前面的代码,因此子进程会和父进程一样,都执行fork之后的代码。 5. 进程的状态当一个进程实体从磁盘加载到内存时,会创建对应的task_stuct,进程有不同的状态。在Linux中,所有运行在系统里的进程都以task_struct链表的形式存在内核里,根据状态的不同,可以将 task_struct中有关于进程状态的描述:
R状态:可执行状态,只有该状态的进程才可以上处理机运行。同一时刻可以有多个进程同时处于R状态,除了上处理机的进程外,其余R状态的进程以链表的形式组成队列,等待上处理机。在操作系统教材中的运行态和就绪态,在Linux中统一为R状态。 S状态:可中断睡眠状态,进程因为等待某些资源,而没有上处理机运行,该状态即S状态。当得到等待的资源,或者接收到某些异步信号时,进程将会被唤醒。一般情况下用ps命令查看进程状态,大多数进程都是S状态。 D状态:深度睡眠状态,该状态下不接受一些异步信号。该状态存在的原因是操作系统的某一些操作要求是原子操作,中间不可以接受其他异步信号的干扰,只要对应资源不得到满足,就一直处于D状态。例如, kill -9 也杀不死D状态的进程。而实际中,我们用ps命令几乎是无法捕捉到D状态的进程,因为原子操作往往比较短暂。 T状态:可以通过发送 SIGSTOP 信号给进程来停止(T)进程。这个被暂停的进程可 以通过发送 SIGCONT 信号让进程继续运行。 X状态:死亡状态,该状态是返回状态,在任务列表中看不到。 Z状态:僵尸状态,该状态是一个特殊的状态。当进程退出时,如果父进程没有读取到子进程退出的返回代码,就会产生僵尸进程。僵尸进程会一直以Z状态留在进程表中,等待父进程读取其退出状态。即便是退出状态的进程,本身也需要用PCB进行维护,也就是说,如果父进程不读取子进程的退出信息,子进程的PCB会一直在内存中,从而造成了内存泄漏。 除了僵尸进程,系统中还可能存在另外一种进程——孤儿进程。当父进程先退出时,子进程就成了孤儿进程,此时孤儿进程会被1号init进程领养,其PPID变为1。 6. 进程地址空间我们将第4节讲解fork函数时的代码稍作修改
执行结果如下 我们惊奇地发现,父进程和子进程的&g_val是一样的,但是g_val居然不一样! 我们知道,相同的物理内存单元中不可能存储不同的两个数,也就是说,这里的地址并不是实际的物理地址,而是虚拟地址。那么,操作系统是如何管理进程的地址空间呢? 6.1 mm_struct对于操作系统而言,管理的方式是先用数据结构进行描述,再将数据结构进行组织。我们知道当一个进程创建时,会创建对应的PCB,在Linux中,task_struct中有一个结构体——struct mm_struct,这个结构体就是用来描述该进程虚拟地址的结构体。 mm_struct源码如下
因此,进程地址空间实际上就是结构体mm_struct所描述的虚拟空间,每个进程都有自己的虚拟地址空间。每个进程的虚拟地址如下图所示。 在Linux中,采用分页存储的方式对内存进行管理。既然我们平时所看到的地址不是实际的物理地址,那就需要操作系统将虚拟地址映射为物理地址。操作系统是借助页表来实现虚拟地址和物理地址的映射的,页表的本质也是一个数据结构,最主要的两项就是进程的虚拟地址和实际物理地址的映射关系。 6.2 写时拷贝在我们的代码中,当fork创建子进程时,会将父进程的mm_struct也拷贝给子进程,一开始,内存中只有一份g_val,当子进程修改g_val时,由于父子进程的数据是各自私有的,进程之间的执行应该具有独立性,因此子进程修改g_val不应该影响到父进程。此时就会发生写时拷贝,即子进程在内存中开辟一块新的空间,将修改后的值填入该空间,并且修改子进程页表中虚拟地址映射的实际物理地址。 因此,我们看到了上述相同虚拟地址中存储的数值不同的场景。 6.3 为什么要有进程地址空间?这是因为引入了进程地址空间后,可以保证每个进程所用的空间独立而连续。一个进程的越界操作并不会影响另一个进程,这样就实现了内存的保护。同时,每个进程地址空间是远大于实际内存空间的,这样也可以通过虚拟的方式实现内存的扩充。当一个进程退出后,我们只需要清除掉该进程的mm_struct和页表就可,有利于内存的分配回收。 |
|
|
上一篇文章 查看所有文章 |
|
开发:
C++知识库
Java知识库
JavaScript
Python
PHP知识库
人工智能
区块链
大数据
移动开发
嵌入式
开发工具
数据结构与算法
开发测试
游戏开发
网络协议
系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程 数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁 |
360图书馆 购物 三丰科技 阅读网 日历 万年历 2024年11日历 | -2024/11/15 9:33:58- |
|
网站联系: qq:121756557 email:121756557@qq.com IT数码 |