IT数码 购物 网址 头条 软件 日历 阅读 图书馆
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
图片批量下载器
↓批量下载图片,美女图库↓
图片自动播放器
↓图片自动播放器↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁
 
   -> 系统运维 -> linux内核那些事之VMA常用操作 -> 正文阅读

[系统运维]linux内核那些事之VMA常用操作

内核对vm_area_struct 数据结构相关操作进行了一系列封装,方面进行后续操作,vma的操作实现大部分位于mm\mmap.c文件中

find_vma()

find_vma()是内核中经常需要查找某个给定的虚拟地址是否已经分配,源代码如下:


/* Look up the first VMA which satisfies  addr < vm_end,  NULL if none. */
struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
{
	struct rb_node *rb_node;
	struct vm_area_struct *vma;

	/* Check the cache first. */
	vma = vmacache_find(mm, addr);
	if (likely(vma))
		return vma;

	rb_node = mm->mm_rb.rb_node;

	while (rb_node) {
		struct vm_area_struct *tmp;

		tmp = rb_entry(rb_node, struct vm_area_struct, vm_rb);

		if (tmp->vm_end > addr) {
			vma = tmp;
			if (tmp->vm_start <= addr)
				break;
			rb_node = rb_node->rb_left;
		} else
			rb_node = rb_node->rb_right;
	}

	if (vma)
		vmacache_update(addr, vma);
	return vma;
}

参数:

  • struct mm_struct *mm:为查询的虚拟地址空间是属于哪个进程的空间管理。
  • unsigned long addr:要查询的地址。

函数源代码主要流程:

  • vmacache_find(mm, addr):首先从 vmcache中查询是否存在该地址对应的vma,关于vmcache可以看下《inux内核那些事之用户空间管理》.
  • 如果vmcache里面没有,则从mm中所管理的所有vma进行遍历查询即遍历mm中mm_rb红黑树,寻找合适的vma(合适vma定义即离addr最近的vma即addr一定小于vma->end)
  • 如果查询到vma,则刷新vmacahe?vmacache_update(addr, vma), 以加快速度查找。

find_vma函数返回的vma,有两种情况:

  • 要查询的addr地址位于VMA空间范围之内,即位于[vma->vm_start, vma->vm_end) 之内
  • 要查询的addr 不位于vma内,即addr 小于vm->vm->vm_start

返回的vma 的vm->end地址一定大于addr,但是不能够保证addr位于vma内,但是能够保证返回的vma一定位于addr最近的已经分配的空间。

find_vma_prev

find_vma_prev和find_vma功能类似,不过该函数不仅能够返回查找到的vma,还返回了vma前一个prev节点:


/*
 * Same as find_vma, but also return a pointer to the previous VMA in *pprev.
 */
struct vm_area_struct *
find_vma_prev(struct mm_struct *mm, unsigned long addr,
			struct vm_area_struct **pprev)
{
	struct vm_area_struct *vma;

	vma = find_vma(mm, addr);
	if (vma) {
		*pprev = vma->vm_prev;
	} else {
		struct rb_node *rb_node = rb_last(&mm->mm_rb);

		*pprev = rb_node ? rb_entry(rb_node, struct vm_area_struct, vm_rb) : NULL;
	}
	return vma;
}

代码主要处理流程:

  • 调用find_vma查找 一个vma
  • 如果vma不为空,则将vma之前的节点返回*pprev=vma->vm_prev.
  • 如果vma为空,则返回当前进程内最后申请的vma rb_last(&mm->mm_rb), 如果rb_node为空,则说明该进程空间还没有申请过vma。

find_vma_links()

find_vma_link 主要经常用于创建一个新的vma过程中使用,该函数不仅能够返回查询到的vma以及pprev, 还返回rb_link即为新的要插入的vma返回一个合适的位置进行插入


static int find_vma_links(struct mm_struct *mm, unsigned long addr,
		unsigned long end, struct vm_area_struct **pprev,
		struct rb_node ***rb_link, struct rb_node **rb_parent)
{
	struct rb_node **__rb_link, *__rb_parent, *rb_prev;

	__rb_link = &mm->mm_rb.rb_node;
	rb_prev = __rb_parent = NULL;

	while (*__rb_link) {
		struct vm_area_struct *vma_tmp;

		__rb_parent = *__rb_link;
		vma_tmp = rb_entry(__rb_parent, struct vm_area_struct, vm_rb);

		if (vma_tmp->vm_end > addr) {
			/* Fail if an existing vma overlaps the area */
			if (vma_tmp->vm_start < end)
				return -ENOMEM;
			__rb_link = &__rb_parent->rb_left;
		} else {
			rb_prev = __rb_parent;
			__rb_link = &__rb_parent->rb_right;
		}
	}

	*pprev = NULL;
	if (rb_prev)
		*pprev = rb_entry(rb_prev, struct vm_area_struct, vm_rb);
	*rb_link = __rb_link;
	*rb_parent = __rb_parent;
	return 0;
}

该函数会遍历rb tree直到叶子节点没有子节点为止。

  • 遍历过程中如果addr 大于vma->vm_end,则将__rb_link = &__rb_parent->rb_rightrb_prev=__rb_parent,往右节点遍历
  • 如果addr 小于vma->vm_end, 且end>vma->vm_start, 则返回错误-ENOMEM
  • 如果addr 小于vma->vm_end? 且且end<=?vma->vm_start,则往左节点遍历
  • 上述如此反复,直到叶子节点没有子节点为止。
  • 并将*rb_link = __rb_link及?*rb_parent = __rb_parent, 并且返回*pprev.

vm_area_cachep

每次申请一个新的vm_area_struct 结构是,都是从vm_area_cachep中获取,vm_area_cachep为基于slab 算法管理着所有的申请的vm_area_struct结构,例如vm_area_alloc 申请一个新的VMA时,从vm_area_cachep中申请一个新的VMA结构

struct vm_area_struct *vm_area_alloc(struct mm_struct *mm)
{
	struct vm_area_struct *vma;

	vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
	if (vma)
		vma_init(vma, mm);
	return vma;
}

从?vm_area_cachep中申请一个vma,?vm_area_cache为基于slab分配算法(后续再详细描述)在buffy算法之上 管理小于page的内存分配算法,proc_caches_init()初始化时会创建一个?vm_area_cache:


void __init proc_caches_init(void)
{
   ... ...

	mm_cachep = kmem_cache_create_usercopy("mm_struct",
			mm_size, ARCH_MIN_MMSTRUCT_ALIGN,
			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
			offsetof(struct mm_struct, saved_auxv),
			sizeof_field(struct mm_struct, saved_auxv),
			NULL);
	vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC|SLAB_ACCOUNT);
	mmap_init();
	nsproxy_cache_init();
}

可以通过cat /proc/slabinfo 命令查看 到vm_are_struct结构分配情况:

?vma_init

初始化vma函数:

static inline void vma_init(struct vm_area_struct *vma, struct mm_struct *mm)
{
	static const struct vm_operations_struct dummy_vm_ops = {};

	memset(vma, 0, sizeof(*vma));
	vma->vm_mm = mm;
	vma->vm_ops = &dummy_vm_ops;
	INIT_LIST_HEAD(&vma->anon_vma_chain);
}

?这里需要特别注意的就是vm_ops设置,此时vm_ops里面各自操作全部为空,即使用系统默认的VMA操作。

VMA 匿名空间

在系统中很多情况包括申请一个内存,以及mmap系统调用申请一个新的匿名映射申请的vma都属于匿名空间,vma_set_anonymous()设置VMA为匿名空间:

static inline void vma_set_anonymous(struct vm_area_struct *vma)
{
	vma->vm_ops = NULL;
}

可以看懂当vma为匿名空间时,vm_ops为NULL。

static inline bool vma_is_anonymous(struct vm_area_struct *vma)
{
	return !vma->vm_ops;
}

判断一个vma是否为匿名,如果vm_ops为空则为匿名。

vma_is_foreign

判断vma属于当前进程空间内:

static inline bool vma_is_foreign(struct vm_area_struct *vma)
{
	if (!current->mm)
		return true;

	if (current->mm != vma->vm_mm)
		return true;

	return false;
}

如果不属于当前运行进程内空间则返回true,否则返回false?

insert_vm_struct()

把新创建的VMA插入到进程的mm 红黑树中:


/* Insert vm structure into process list sorted by address
 * and into the inode's i_mmap tree.  If vm_file is non-NULL
 * then i_mmap_rwsem is taken here.
 */
int insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
{
	struct vm_area_struct *prev;
	struct rb_node **rb_link, *rb_parent;

	if (find_vma_links(mm, vma->vm_start, vma->vm_end,
			   &prev, &rb_link, &rb_parent))
		return -ENOMEM;
	if ((vma->vm_flags & VM_ACCOUNT) &&
	     security_vm_enough_memory_mm(mm, vma_pages(vma)))
		return -ENOMEM;

	/*
	 * The vm_pgoff of a purely anonymous vma should be irrelevant
	 * until its first write fault, when page's anon_vma and index
	 * are set.  But now set the vm_pgoff it will almost certainly
	 * end up with (unless mremap moves it elsewhere before that
	 * first wfault), so /proc/pid/maps tells a consistent story.
	 *
	 * By setting it to reflect the virtual start address of the
	 * vma, merges and splits can happen in a seamless way, just
	 * using the existing file pgoff checks and manipulations.
	 * Similarly in do_mmap_pgoff and in do_brk.
	 */
	if (vma_is_anonymous(vma)) {
		BUG_ON(vma->anon_vma);
		vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
	}

	vma_link(mm, vma, prev, rb_link, rb_parent);
	return 0;
}
  • ?调用find_vma_links(),查找vma要插入的红黑树中节点位置。
  • 如何flag 设置了VM_ACCOUNT,且security_vm_enough_memory_mm()没有足够内存 返回失败,否则继续往下走。
  • vma_is_anonymous(),如果是匿名映射 则把vma->vm_pgoff 设置成?vma->vm_start >> PAGE_SHIFT,即偏移位置为vm的start 虚拟地址 vfn
  • vma_link将vma 添加到相应节点中。

vma_link

插入vma到相应的节点上去,由于vma 即支持双向链表又支持红黑树方式,处理起来比较繁琐:


static void vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
			struct vm_area_struct *prev, struct rb_node **rb_link,
			struct rb_node *rb_parent)
{
	struct address_space *mapping = NULL;

	if (vma->vm_file) {
		mapping = vma->vm_file->f_mapping;
		i_mmap_lock_write(mapping);
	}

	__vma_link(mm, vma, prev, rb_link, rb_parent);
	__vma_link_file(vma);

	if (mapping)
		i_mmap_unlock_write(mapping);

	mm->map_count++;
	validate_mm(mm);
}
  • 如果是文件映射,则获取文件映射mapping = vma->vm_file->f_mapping 空间
  • __vma_link:将vma插入到链表和红黑树中。
  • __vma_link_file:如果是文件映射,则还需要将vma添加到文件映射空间address_space中的i_mmap中
  • mm->map_count++: mm中map_count+1.
  • validate_mm: vma的后续处理。

vma_merge

vma虽然是一个虚拟空间,但是再反复申请或释放过程中会不断产生一些碎片,为了解决这些碎片问题需要不断与周围vma进行合并。合并的另外一个好处就是可以节省vma数目,减少内存占用空间。因此在新申请一个节点之前,首先需要根据需要申请的addr以及大小判断是否和之前或者之后的vma需要合并,如何能够合并就可以减少vma结构。

struct vm_area_struct *vma_merge(struct mm_struct *mm,
			struct vm_area_struct *prev, unsigned long addr,
			unsigned long end, unsigned long vm_flags,
			struct anon_vma *anon_vma, struct file *file,
			pgoff_t pgoff, struct mempolicy *policy,
			struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
{
	pgoff_t pglen = (end - addr) >> PAGE_SHIFT;
	struct vm_area_struct *area, *next;
	int err;

	/*
	 * We later require that vma->vm_flags == vm_flags,
	 * so this tests vma->vm_flags & VM_SPECIAL, too.
	 */
	if (vm_flags & VM_SPECIAL)
		return NULL;

	if (prev)
		next = prev->vm_next;
	else
		next = mm->mmap;
	area = next;
	if (area && area->vm_end == end)		/* cases 6, 7, 8 */
		next = next->vm_next;

	/* verify some invariant that must be enforced by the caller */
	VM_WARN_ON(prev && addr <= prev->vm_start);
	VM_WARN_ON(area && end > area->vm_end);
	VM_WARN_ON(addr >= end);

	/*
	 * Can it merge with the predecessor?
	 */
	if (prev && prev->vm_end == addr &&
			mpol_equal(vma_policy(prev), policy) &&
			can_vma_merge_after(prev, vm_flags,
					    anon_vma, file, pgoff,
					    vm_userfaultfd_ctx)) {
		/*
		 * OK, it can.  Can we now merge in the successor as well?
		 */
		if (next && end == next->vm_start &&
				mpol_equal(policy, vma_policy(next)) &&
				can_vma_merge_before(next, vm_flags,
						     anon_vma, file,
						     pgoff+pglen,
						     vm_userfaultfd_ctx) &&
				is_mergeable_anon_vma(prev->anon_vma,
						      next->anon_vma, NULL)) {
							/* cases 1, 6 */
			err = __vma_adjust(prev, prev->vm_start,
					 next->vm_end, prev->vm_pgoff, NULL,
					 prev);
		} else					/* cases 2, 5, 7 */
			err = __vma_adjust(prev, prev->vm_start,
					 end, prev->vm_pgoff, NULL, prev);
		if (err)
			return NULL;
		khugepaged_enter_vma_merge(prev, vm_flags);
		return prev;
	}

	/*
	 * Can this new request be merged in front of next?
	 */
	if (next && end == next->vm_start &&
			mpol_equal(policy, vma_policy(next)) &&
			can_vma_merge_before(next, vm_flags,
					     anon_vma, file, pgoff+pglen,
					     vm_userfaultfd_ctx)) {
		if (prev && addr < prev->vm_end)	/* case 4 */
			err = __vma_adjust(prev, prev->vm_start,
					 addr, prev->vm_pgoff, NULL, next);
		else {					/* cases 3, 8 */
			err = __vma_adjust(area, addr, next->vm_end,
					 next->vm_pgoff - pglen, NULL, next);
			/*
			 * In case 3 area is already equal to next and
			 * this is a noop, but in case 8 "area" has
			 * been removed and next was expanded over it.
			 */
			area = next;
		}
		if (err)
			return NULL;
		khugepaged_enter_vma_merge(area, vm_flags);
		return area;
	}

	return NULL;
}

该函数参数比较多:

mm: 所处的进程空间

prev: 新创建节点要插入的位置之前的节点

addr: 新申请的进程起始地址。

end:新申请的进程空间结束地址。

vm_flags:新申请的进程空间的vm_flags

anon_vma:匿名映射,后续需要详细将主要用于反向映射。

file:文件映射

pgoff: 文件映射中的偏移

policy:内存策略

vm_userfaultfd_ctx: context上下文。

该函数整个代码逻辑比较简单,就是判断是否能够和之前vma以及之后vma向合并:

与前一个vma合并的条件为:

  • 前一个vma->end结束地址等于addr
  • vma policy策略相同
  • 不能和前一个vma?vm_flags相冲突

和后一个vma合并条件为:

  • 后一个vma->start地址与end地址相等
  • vma policy策略相同
  • 不能和后一个vma?vm_flags相冲突

?如果需要申请的新的进程空间vma flag设置为VM_SPECIAL,则不能进行合并直接进行返回

#define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP)

因此一个新申请的进程空间可以合并情况如下:

  • 新VMA的起始地址和前prev节点结束地址重叠,和前一个prev节点合并且满足合并需求,但是不能和后next节点合并
  • 新VMA的结束地址和后next节点的起始地址重叠,和后一个next节点合并且满足合并需求,但是不能和prev节点合并
  • 新的VMA正好能够将prev和next都能衔接上且都能满足合并需求,那么就可以和prev和next合并成一个大的vma

如果能够合并则调用__vma_adjust()进行调整。

__vma_adjust()

__vma_adjust为具体执行合并操作:


/*
 * We cannot adjust vm_start, vm_end, vm_pgoff fields of a vma that
 * is already present in an i_mmap tree without adjusting the tree.
 * The following helper function should be used when such adjustments
 * are necessary.  The "insert" vma (if any) is to be inserted
 * before we drop the necessary locks.
 */
int __vma_adjust(struct vm_area_struct *vma, unsigned long start,
	unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert,
	struct vm_area_struct *expand)
{
	struct mm_struct *mm = vma->vm_mm;
	struct vm_area_struct *next = vma->vm_next, *orig_vma = vma;
	struct address_space *mapping = NULL;
	struct rb_root_cached *root = NULL;
	struct anon_vma *anon_vma = NULL;
	struct file *file = vma->vm_file;
	bool start_changed = false, end_changed = false;
	long adjust_next = 0;
	int remove_next = 0;

	if (next && !insert) {
		struct vm_area_struct *exporter = NULL, *importer = NULL;

		if (end >= next->vm_end) {
			/*
			 * vma expands, overlapping all the next, and
			 * perhaps the one after too (mprotect case 6).
			 * The only other cases that gets here are
			 * case 1, case 7 and case 8.
			 */
			if (next == expand) {
				/*
				 * The only case where we don't expand "vma"
				 * and we expand "next" instead is case 8.
				 */
				VM_WARN_ON(end != next->vm_end);
				/*
				 * remove_next == 3 means we're
				 * removing "vma" and that to do so we
				 * swapped "vma" and "next".
				 */
				remove_next = 3;
				VM_WARN_ON(file != next->vm_file);
				swap(vma, next);
			} else {
				VM_WARN_ON(expand != vma);
				/*
				 * case 1, 6, 7, remove_next == 2 is case 6,
				 * remove_next == 1 is case 1 or 7.
				 */
				remove_next = 1 + (end > next->vm_end);
				VM_WARN_ON(remove_next == 2 &&
					   end != next->vm_next->vm_end);
				/* trim end to next, for case 6 first pass */
				end = next->vm_end;
			}

			exporter = next;
			importer = vma;

			/*
			 * If next doesn't have anon_vma, import from vma after
			 * next, if the vma overlaps with it.
			 */
			if (remove_next == 2 && !next->anon_vma)
				exporter = next->vm_next;

		} else if (end > next->vm_start) {
			/*
			 * vma expands, overlapping part of the next:
			 * mprotect case 5 shifting the boundary up.
			 */
			adjust_next = (end - next->vm_start) >> PAGE_SHIFT;
			exporter = next;
			importer = vma;
			VM_WARN_ON(expand != importer);
		} else if (end < vma->vm_end) {
			/*
			 * vma shrinks, and !insert tells it's not
			 * split_vma inserting another: so it must be
			 * mprotect case 4 shifting the boundary down.
			 */
			adjust_next = -((vma->vm_end - end) >> PAGE_SHIFT);
			exporter = vma;
			importer = next;
			VM_WARN_ON(expand != importer);
		}

		/*
		 * Easily overlooked: when mprotect shifts the boundary,
		 * make sure the expanding vma has anon_vma set if the
		 * shrinking vma had, to cover any anon pages imported.
		 */
		if (exporter && exporter->anon_vma && !importer->anon_vma) {
			int error;

			importer->anon_vma = exporter->anon_vma;
			error = anon_vma_clone(importer, exporter);
			if (error)
				return error;
		}
	}
again:
	vma_adjust_trans_huge(orig_vma, start, end, adjust_next);

	if (file) {
		mapping = file->f_mapping;
		root = &mapping->i_mmap;
		uprobe_munmap(vma, vma->vm_start, vma->vm_end);

		if (adjust_next)
			uprobe_munmap(next, next->vm_start, next->vm_end);

		i_mmap_lock_write(mapping);
		if (insert) {
			/*
			 * Put into interval tree now, so instantiated pages
			 * are visible to arm/parisc __flush_dcache_page
			 * throughout; but we cannot insert into address
			 * space until vma start or end is updated.
			 */
			__vma_link_file(insert);
		}
	}

	anon_vma = vma->anon_vma;
	if (!anon_vma && adjust_next)
		anon_vma = next->anon_vma;
	if (anon_vma) {
		VM_WARN_ON(adjust_next && next->anon_vma &&
			   anon_vma != next->anon_vma);
		anon_vma_lock_write(anon_vma);
		anon_vma_interval_tree_pre_update_vma(vma);
		if (adjust_next)
			anon_vma_interval_tree_pre_update_vma(next);
	}

	if (root) {
		flush_dcache_mmap_lock(mapping);
		vma_interval_tree_remove(vma, root);
		if (adjust_next)
			vma_interval_tree_remove(next, root);
	}

	if (start != vma->vm_start) {
		vma->vm_start = start;
		start_changed = true;
	}
	if (end != vma->vm_end) {
		vma->vm_end = end;
		end_changed = true;
	}
	vma->vm_pgoff = pgoff;
	if (adjust_next) {
		next->vm_start += adjust_next << PAGE_SHIFT;
		next->vm_pgoff += adjust_next;
	}

	if (root) {
		if (adjust_next)
			vma_interval_tree_insert(next, root);
		vma_interval_tree_insert(vma, root);
		flush_dcache_mmap_unlock(mapping);
	}

	if (remove_next) {
		/*
		 * vma_merge has merged next into vma, and needs
		 * us to remove next before dropping the locks.
		 */
		if (remove_next != 3)
			__vma_unlink_common(mm, next, next);
		else
			/*
			 * vma is not before next if they've been
			 * swapped.
			 *
			 * pre-swap() next->vm_start was reduced so
			 * tell validate_mm_rb to ignore pre-swap()
			 * "next" (which is stored in post-swap()
			 * "vma").
			 */
			__vma_unlink_common(mm, next, vma);
		if (file)
			__remove_shared_vm_struct(next, file, mapping);
	} else if (insert) {
		/*
		 * split_vma has split insert from vma, and needs
		 * us to insert it before dropping the locks
		 * (it may either follow vma or precede it).
		 */
		__insert_vm_struct(mm, insert);
	} else {
		if (start_changed)
			vma_gap_update(vma);
		if (end_changed) {
			if (!next)
				mm->highest_vm_end = vm_end_gap(vma);
			else if (!adjust_next)
				vma_gap_update(next);
		}
	}

	if (anon_vma) {
		anon_vma_interval_tree_post_update_vma(vma);
		if (adjust_next)
			anon_vma_interval_tree_post_update_vma(next);
		anon_vma_unlock_write(anon_vma);
	}
	if (mapping)
		i_mmap_unlock_write(mapping);

	if (root) {
		uprobe_mmap(vma);

		if (adjust_next)
			uprobe_mmap(next);
	}

	if (remove_next) {
		if (file) {
			uprobe_munmap(next, next->vm_start, next->vm_end);
			fput(file);
		}
		if (next->anon_vma)
			anon_vma_merge(vma, next);
		mm->map_count--;
		mpol_put(vma_policy(next));
		vm_area_free(next);
		/*
		 * In mprotect's case 6 (see comments on vma_merge),
		 * we must remove another next too. It would clutter
		 * up the code too much to do both in one go.
		 */
		if (remove_next != 3) {
			/*
			 * If "next" was removed and vma->vm_end was
			 * expanded (up) over it, in turn
			 * "next->vm_prev->vm_end" changed and the
			 * "vma->vm_next" gap must be updated.
			 */
			next = vma->vm_next;
		} else {
			/*
			 * For the scope of the comment "next" and
			 * "vma" considered pre-swap(): if "vma" was
			 * removed, next->vm_start was expanded (down)
			 * over it and the "next" gap must be updated.
			 * Because of the swap() the post-swap() "vma"
			 * actually points to pre-swap() "next"
			 * (post-swap() "next" as opposed is now a
			 * dangling pointer).
			 */
			next = vma;
		}
		if (remove_next == 2) {
			remove_next = 1;
			end = next->vm_end;
			goto again;
		}
		else if (next)
			vma_gap_update(next);
		else {
			/*
			 * If remove_next == 2 we obviously can't
			 * reach this path.
			 *
			 * If remove_next == 3 we can't reach this
			 * path because pre-swap() next is always not
			 * NULL. pre-swap() "next" is not being
			 * removed and its next->vm_end is not altered
			 * (and furthermore "end" already matches
			 * next->vm_end in remove_next == 3).
			 *
			 * We reach this only in the remove_next == 1
			 * case if the "next" vma that was removed was
			 * the highest vma of the mm. However in such
			 * case next->vm_end == "end" and the extended
			 * "vma" has vma->vm_end == next->vm_end so
			 * mm->highest_vm_end doesn't need any update
			 * in remove_next == 1 case.
			 */
			VM_WARN_ON(mm->highest_vm_end != vm_end_gap(vma));
		}
	}
	if (insert && file)
		uprobe_mmap(insert);

	validate_mm(mm);

	return 0;
}

参数:

vma:要合并调整的vma

start: 新合并的vma 起始地址

end:要合并的结束地址

pgoff: 文件映射则指向偏移

insert:要插入的节点位置

expand:合并后要扩展到的节点位置,如果要合并的vma只是向前或者向后一个vma,则expand和vma相等,如果是两个vma合并,则expand指向要扩展到的节点vma.

  系统运维 最新文章
配置小型公司网络WLAN基本业务(AC通过三层
如何在交付运维过程中建立风险底线意识,提
快速传输大文件,怎么通过网络传大文件给对
从游戏服务端角度分析移动同步(状态同步)
MySQL使用MyCat实现分库分表
如何用DWDM射频光纤技术实现200公里外的站点
国内顺畅下载k8s.gcr.io的镜像
自动化测试appium
ctfshow ssrf
Linux操作系统学习之实用指令(Centos7/8均
上一篇文章      下一篇文章      查看所有文章
加:2021-08-17 15:47:33  更:2021-08-17 15:49:45 
 
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁

360图书馆 购物 三丰科技 阅读网 日历 万年历 2024年11日历 -2024/11/15 9:57:01-

图片自动播放器
↓图片自动播放器↓
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
图片批量下载器
↓批量下载图片,美女图库↓
  网站联系: qq:121756557 email:121756557@qq.com  IT数码