??之前章我们都是使用的 GPIO 输出功能,还没有用过 GPIO 输入功能,本章我们就来学习一下如果在 Linux 下编写 GPIO 输入驱动程序,我们使用上一篇博客讲述的原子操作来对按键值进行保护。
Linux 下按键驱动原理
??按键驱动和 LED 驱动原理上来讲基本都是一样的,都是操作 GPIO,只不过一个是读取GPIO 的高低电平,一个是从 GPIO 输出高低电平。本文我们实现按键输入,在驱动程序中使用一个整形变量来表示按键值,应用程序通过 read 函数来读取按键值,判断按键有没有按下。在这里,这个保存按键值的变量就是个共享资源,驱动程序要向其写入按键值,应用程序要读取按键值。所以我们要对其进行保护,对于整形变量而言我们首选的就是原子操作,使用原子操作对变量进行赋值以及读取。 Linux 下的按键驱动原理很简单,接下来开始编写驱动。 ??注意,本篇文章内容只是为了演示 Linux 下 GPIO 输入驱动的编写,实际中的按键驱动并不会采用本文中所讲解的方法, Linux 下的 input 子系统专门用于输入设备!
程序编写
1.修改设备树文件
1.1 添加 pinctrl 节点
??开发板上的KEY 使用了 UART1_CTS_B 这个 PIN,打开 imx6ull-14x14-evk.dts,在 iomuxc 节点的 imx6ul-evk 子节点下创建一个名为“pinctrl_key”的子节点,节点内容如下所示:
pinctrl_key: keygrp {
fsl,pins = <
MX6UL_PAD_UART1_CTS_B__GPIO1_IO18 0xF080
>;
};
1.2 添加 KEY 设备节点
??在根节点“/”下创建 KEY 节点,节点名为“key”,节点内容如下:
key {
#address-cells = <1>;
#size-cells = <1>;
compatible = "atkalpha-key";
pinctrl-names = "default";
pinctrl-0 = <&pinctrl_key>;
key-gpio = <&gpio1 18 GPIO_ACTIVE_LOW>;
status = "okay";
};
1.3 检查 PIN 是否被其他外设使用
??在本文实验中蜂鸣器使用的 PIN 为 UART1_CTS_B,因此先检查 PIN 为 UART1_CTS_B 这个 PIN 有没有被其他的 pinctrl 节点使用,如果有使用的话就要屏蔽掉,然后再检查 GPIO1_IO18这个 GPIO 有没有被其他外设使用,如果有的话也要屏蔽掉。 ??设备树编写完成以后使用“ make dtbs”命令重新编译设备树,然后使用新编译出来的imx6ull-14x14-evk.dtb 文件启动 Linux 系统。启动成功以后进入“/proc/device-tree”目录中查看“key”节点是否存在,如果存在的话就说明设备树基本修改成功(具体还要驱动验证),结果如图所示:
2.按键驱动程序编写
#include <linux/types.h>
#include <linux/kernel.h>
#include <linux/delay.h>
#include <linux/ide.h>
#include <linux/init.h>
#include <linux/module.h>
#include <linux/errno.h>
#include <linux/gpio.h>
#include <linux/cdev.h>
#include <linux/device.h>
#include <linux/of.h>
#include <linux/of_address.h>
#include <linux/of_gpio.h>
#include <linux/semaphore.h>
#include <asm/mach/map.h>
#include <asm/uaccess.h>
#include <asm/io.h>
#define KEY_CNT 1
#define KEY_NAME "key"
#define KEY0VALUE 0XF0
#define INVAKEY 0X00
struct key_dev{
dev_t devid;
struct cdev cdev;
struct class *class;
struct device *device;
int major;
int minor;
struct device_node *nd;
int key_gpio;
atomic_t keyvalue;
};
struct key_dev keydev;
static int keyio_init(void)
{
keydev.nd = of_find_node_by_path("/key");
if (keydev.nd== NULL) {
return -EINVAL;
}
keydev.key_gpio = of_get_named_gpio(keydev.nd ,"key-gpio", 0);
if (keydev.key_gpio < 0) {
printk("can't get key0\r\n");
return -EINVAL;
}
printk("key_gpio=%d\r\n", keydev.key_gpio);
gpio_request(keydev.key_gpio, "key0");
gpio_direction_input(keydev.key_gpio);
return 0;
}
static int key_open(struct inode *inode, struct file *filp)
{
int ret = 0;
filp->private_data = &keydev;
ret = keyio_init();
if (ret < 0) {
return ret;
}
return 0;
}
static ssize_t key_read(struct file *filp, char __user *buf, size_t cnt, loff_t *offt)
{
int ret = 0;
int value;
struct key_dev *dev = filp->private_data;
if (gpio_get_value(dev->key_gpio) == 0) {
while(!gpio_get_value(dev->key_gpio));
atomic_set(&dev->keyvalue, KEY0VALUE);
} else {
atomic_set(&dev->keyvalue, INVAKEY);
}
value = atomic_read(&dev->keyvalue);
ret = copy_to_user(buf, &value, sizeof(value));
return ret;
}
static ssize_t key_write(struct file *filp, const char __user *buf, size_t cnt, loff_t *offt)
{
return 0;
}
static int key_release(struct inode *inode, struct file *filp)
{
return 0;
}
static struct file_operations key_fops = {
.owner = THIS_MODULE,
.open = key_open,
.read = key_read,
.write = key_write,
.release = key_release,
};
static int __init mykey_init(void)
{
atomic_set(&keydev.keyvalue, INVAKEY);
if (keydev.major) {
keydev.devid = MKDEV(keydev.major, 0);
register_chrdev_region(keydev.devid, KEY_CNT, KEY_NAME);
} else {
alloc_chrdev_region(&keydev.devid, 0, KEY_CNT, KEY_NAME);
keydev.major = MAJOR(keydev.devid);
keydev.minor = MINOR(keydev.devid);
}
keydev.cdev.owner = THIS_MODULE;
cdev_init(&keydev.cdev, &key_fops);
cdev_add(&keydev.cdev, keydev.devid, KEY_CNT);
keydev.class = class_create(THIS_MODULE, KEY_NAME);
if (IS_ERR(keydev.class)) {
return PTR_ERR(keydev.class);
}
keydev.device = device_create(keydev.class, NULL, keydev.devid, NULL, KEY_NAME);
if (IS_ERR(keydev.device)) {
return PTR_ERR(keydev.device);
}
return 0;
}
static void __exit mykey_exit(void)
{
cdev_del(&keydev.cdev);
unregister_chrdev_region(keydev.devid, KEY_CNT);
device_destroy(keydev.class, keydev.devid);
class_destroy(keydev.class);
}
module_init(mykey_init);
module_exit(mykey_exit);
MODULE_LICENSE("GPL");
MODULE_AUTHOR("jiajia2020");
??结构体 key_dev 为按键的设备结构体,原子变量 keyvalue 用于记录按键值。函数 keyio_init 用于初始化按键,从设备树中获取按键的 gpio 信息,然后设置为输入。将按键的初始化代码提取出来,将其作为独立的一个函数有利于提高程序的模块化设计。 ??key_read 函数,应用程序通过 read 函数读取按键值的时候此函数就会执行。读取按键 IO 的电平时,如果为 0 的话就表示按键按下了,如果按键按下的话就等待按键释放。按键释放以后标记按键值为KEY0VALUE。
3.编写测试 APP
#include "stdio.h"
#include "unistd.h"
#include "sys/types.h"
#include "sys/stat.h"
#include "fcntl.h"
#include "stdlib.h"
#include "string.h"
#define KEY0VALUE 0XF0
#define INVAKEY 0X00
int main(int argc, char *argv[])
{
int fd, ret;
char *filename;
int keyvalue;
if(argc != 2){
printf("Error Usage!\r\n");
return -1;
}
filename = argv[1];
fd = open(filename, O_RDWR);
if(fd < 0){
printf("file %s open failed!\r\n", argv[1]);
return -1;
}
while(1) {
read(fd, &keyvalue, sizeof(keyvalue));
if (keyvalue == KEY0VALUE) {
printf("KEY0 Press, value = %#X\r\n", keyvalue);
}
}
ret= close(fd);
if(ret < 0){
printf("file %s close failed!\r\n", argv[1]);
return -1;
}
return 0;
}
??循环读取/dev/key 文件,也就是循环读取按键值,并且将按键值打印出来。
运行测试
??将编译出来的 key.ko 和 keyApp 这两个文件拷贝到 rootfs/lib/modules/4.1.15 目录中,重启开发板,进入到目录 lib/modules/4.1.15 中,输入如下命令加载 key.ko 驱动模块:
depmod
modprobe key.ko
??驱动加载成功以后如下命令来测试:
./keyApp /dev/key
??输入上述命令以后终端显示如图所示: ??按下开发板上的 KEY0 按键, keyApp 就会获取并且输出按键信息,如图所示: ??当我们按下 KEY0 以后就会打印出“KEY0 Press, value = 0XF0”,表示按键按下。但是有时候按下一次 KEY0 但是会输出好几行“KEY0 Press,value = 0XF0”,这是因为我们的代码没有做按键消抖处理。
|