IT数码 购物 网址 头条 软件 日历 阅读 图书馆
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
图片批量下载器
↓批量下载图片,美女图库↓
图片自动播放器
↓图片自动播放器↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁
 
   -> 系统运维 -> linux 设备树子系统 -> 正文阅读

[系统运维]linux 设备树子系统

0、说明

????????设备树子系统,将硬件独有信息抽取到特定格式文件中去。

1、dts格式

dts文件总布局

/dts-v1/;
//保存的内存,不会分给内核使用
[memory reservations]
/ {                    //根
[property definitions] //属性,如什么类型单板
[child nodes]
};

node节点格式

[label:] node-name[@unit-address] { //@unit-address分辨多个同类node
[properties definitions]
[child nodes]
};

Property属性格式

[label:] property-name = value;
[label:] property-name;

value三种格式

//32位数字 <>
clock-frequency = <0x00000001 0x00000000>;
//字符串 ""
compatible = "simple-bus";
//字节 []
local-mac-address = [00 00 12 34 56 78];

标准的property

?特殊说明

  1. 每个node唯一值phandle,可以被其他节点通过相同phandle索引到
  2. 后面的node属性会覆盖之前的属性
  3. ?#address-cells and #size-cells是指示reg属性的参数特点,单位u32
  4. 不同类型的属性,可以组合
  5. 同一级节点不能同名,类似于同目录下不能同名文件
  6. 通过label可直接应用到node

2、DTB格式

dtc编译dts文件后产生的一个dtb文件。如下,主要有包含头部在内的四部分组成。

2.1? DTB头部

? ? ? ? ?magic(0xd00dfeed)、dtb文件大小、其他段偏移地址和大小等。

2.2?Memory Reservation Block

struct fdt_reserve_entry {
uint64_t address;
uint64_t size;
};

2.3?Structure Block

? ? ? ? 存储了所有节点信息。

---------------0x00000001: 根节点开始
---------------:节点名字

---------------0x00000003: 属性开始
---------------:属性value长度(4B)
---------------:属性名字在string中的偏移(4B)
---------------:属性value内容

---------------0x00000003: 属性开始
---------------:属性value长度(4B)
---------------:属性名字在string中的偏移(4B)
---------------:属性value内容




---------------0x00000001:LED点开始
---------------:节点名字

---------------0x00000003: 属性开始
---------------:属性value长度(4B)
---------------:属性名字在string中的偏移(4B)
---------------:属性value内容
---------------0x00000003: 属性开始
---------------:属性value长度(4B)
---------------:属性名字在string中的偏移(4B)
---------------:属性value内容

---------------0x00000002:LED节点结束


---------------0x00000002: 根节点结束

---------------0x00000009: Structure Block的结束

????????

2.4 Strings Block

????????存储了所有属性的名字,如compatible、#address-cells等字符串。共给Structure Block通过偏移来引用。

3、内核中的设备树

3.1 内核中的设备树描述

Documentation

Documentation/devicetree/usage-model.rst

Linux uses DT data for three major purposes:

1) platform identification,? ? ? ? ? ? ? ? ? ? ? ? ?//平台识别信息,如早期初始化时的单板信息
2) runtime configuration, and? ? ? ? ? ? ? ? ? //运行时的配置,如console信息
3) device population.? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? //设备? 如uart,SPI

device_node?

struct device_node {                                                     
    const char *name;                                                    
    phandle phandle;                                                     
    const char *full_name;                                               
    struct fwnode_handle fwnode;                                         
                                                                         
    struct  property *properties;                                        
    struct  property *deadprops;    /* removed properties */             
    struct  device_node *parent;                                         
    struct  device_node *child;                                          
    struct  device_node *sibling;                                        
#if defined(CONFIG_OF_KOBJ)                                              
    struct  kobject kobj;                                                
#endif                                                                   
    unsigned long _flags;                                                
    void    *data;                                                       
#if defined(CONFIG_SPARC)                                                
    unsigned int unique_id;                                              
    struct of_irq_controller *irq_trans;                                 
#endif                                                                   
};                                                                       
                                                                         
#define MAX_PHANDLE_ARGS 16                                              
struct of_phandle_args {                                                 
    struct device_node *np;                                              
    int args_count;                                                      
    uint32_t args[MAX_PHANDLE_ARGS];                                     
};

3.2 linux内核启动阶段的设备树解析

3.2.1 uboot跳转内核的传参

????????uboot中增加使用theKernel(0, 362, 0x30000100);来跳转到内核。uboot将r0-r2三个参数传给了内核。

????????r0 一般设置为0;
????????r1 一般设置为machine id (在使用设备树时该参数没有被使用);?
????????r2 一般设置ATAGS或DTB的开始地址

? ? ? ? 最初在r2的位置,存放了uboot准备好的tags,传递给内核,当使用设备时,r2不再存放tag首地址,而是uboot将设备树加载到内存中的地址。

3.2.2 内核启动前期阶段对uboot传入参数的处理

/* SPDX-License-Identifier: GPL-2.0-only */
/*
 *  linux/arch/arm/kernel/head.S
 *
 *  Copyright (C) 1994-2002 Russell King
 *  Copyright (c) 2003 ARM Limited
 *  All Rights Reserved
 *
 *  Kernel startup code for all 32-bit CPUs
 */
#include <linux/linkage.h>
#include <linux/init.h>
#include <linux/pgtable.h>

#include <asm/assembler.h>
#include <asm/cp15.h>
#include <asm/domain.h>
#include <asm/ptrace.h>
#include <asm/asm-offsets.h>
#include <asm/memory.h>
#include <asm/thread_info.h>

#if defined(CONFIG_DEBUG_LL) && !defined(CONFIG_DEBUG_SEMIHOSTING)
#include CONFIG_DEBUG_LL_INCLUDE
#endif

/*
 * swapper_pg_dir is the virtual address of the initial page table.
 * We place the page tables 16K below KERNEL_RAM_VADDR.  Therefore, we must
 * make sure that KERNEL_RAM_VADDR is correctly set.  Currently, we expect
 * the least significant 16 bits to be 0x8000, but we could probably
 * relax this restriction to KERNEL_RAM_VADDR >= PAGE_OFFSET + 0x4000.
 */
#define KERNEL_RAM_VADDR	(PAGE_OFFSET + TEXT_OFFSET)
#if (KERNEL_RAM_VADDR & 0xffff) != 0x8000
#error KERNEL_RAM_VADDR must start at 0xXXXX8000
#endif

#ifdef CONFIG_ARM_LPAE
	/* LPAE requires an additional page for the PGD */
#define PG_DIR_SIZE	0x5000
#define PMD_ORDER	3
#else
#define PG_DIR_SIZE	0x4000
#define PMD_ORDER	2
#endif

	.globl	swapper_pg_dir
	.equ	swapper_pg_dir, KERNEL_RAM_VADDR - PG_DIR_SIZE

	.macro	pgtbl, rd, phys
	add	\rd, \phys, #TEXT_OFFSET
	sub	\rd, \rd, #PG_DIR_SIZE
	.endm

/*
 * Kernel startup entry point.
 * ---------------------------
 *
 * This is normally called from the decompressor code.  The requirements
 * are: MMU = off, D-cache = off, I-cache = dont care, r0 = 0,
 * r1 = machine nr, r2 = atags or dtb pointer.
 *
 * This code is mostly position independent, so if you link the kernel at
 * 0xc0008000, you call this at __pa(0xc0008000).
 *
 * See linux/arch/arm/tools/mach-types for the complete list of machine
 * numbers for r1.
 *
 * We're trying to keep crap to a minimum; DO NOT add any machine specific
 * crap here - that's what the boot loader (or in extreme, well justified
 * circumstances, zImage) is for.
 */
	.arm

	__HEAD
ENTRY(stext)
 ARM_BE8(setend	be )			@ ensure we are in BE8 mode

 THUMB(	badr	r9, 1f		)	@ Kernel is always entered in ARM.
 THUMB(	bx	r9		)	@ If this is a Thumb-2 kernel,
 THUMB(	.thumb			)	@ switch to Thumb now.
 THUMB(1:			)

#ifdef CONFIG_ARM_VIRT_EXT
	bl	__hyp_stub_install
#endif
	@ ensure svc mode and all interrupts masked
	safe_svcmode_maskall r9

	mrc	p15, 0, r9, c0, c0		@ get processor id
	bl	__lookup_processor_type		@ r5=procinfo r9=cpuid
	movs	r10, r5				@ invalid processor (r5=0)?
 THUMB( it	eq )		@ force fixup-able long branch encoding
	beq	__error_p			@ yes, error 'p'

#ifdef CONFIG_ARM_LPAE
	mrc	p15, 0, r3, c0, c1, 4		@ read ID_MMFR0
	and	r3, r3, #0xf			@ extract VMSA support
	cmp	r3, #5				@ long-descriptor translation table format?
 THUMB( it	lo )				@ force fixup-able long branch encoding
	blo	__error_lpae			@ only classic page table format
#endif

#ifndef CONFIG_XIP_KERNEL
	adr	r3, 2f
	ldmia	r3, {r4, r8}
	sub	r4, r3, r4			@ (PHYS_OFFSET - PAGE_OFFSET)
	add	r8, r8, r4			@ PHYS_OFFSET
#else
	ldr	r8, =PLAT_PHYS_OFFSET		@ always constant in this case
#endif

	/*
	 * r1 = machine no, r2 = atags or dtb,
	 * r8 = phys_offset, r9 = cpuid, r10 = procinfo
	 */
	bl	__vet_atags
#ifdef CONFIG_SMP_ON_UP
	bl	__fixup_smp
#endif
#ifdef CONFIG_ARM_PATCH_PHYS_VIRT
	bl	__fixup_pv_table
#endif
	bl	__create_page_tables

	/*
	 * The following calls CPU specific code in a position independent
	 * manner.  See arch/arm/mm/proc-*.S for details.  r10 = base of
	 * xxx_proc_info structure selected by __lookup_processor_type
	 * above.
	 *
	 * The processor init function will be called with:
	 *  r1 - machine type
	 *  r2 - boot data (atags/dt) pointer
	 *  r4 - translation table base (low word)
	 *  r5 - translation table base (high word, if LPAE)
	 *  r8 - translation table base 1 (pfn if LPAE)
	 *  r9 - cpuid
	 *  r13 - virtual address for __enable_mmu -> __turn_mmu_on
	 *
	 * On return, the CPU will be ready for the MMU to be turned on,
	 * r0 will hold the CPU control register value, r1, r2, r4, and
	 * r9 will be preserved.  r5 will also be preserved if LPAE.
	 */
	ldr	r13, =__mmap_switched		@ address to jump to after
						@ mmu has been enabled
	badr	lr, 1f				@ return (PIC) address
#ifdef CONFIG_ARM_LPAE
	mov	r5, #0				@ high TTBR0
	mov	r8, r4, lsr #12			@ TTBR1 is swapper_pg_dir pfn
#else
	mov	r8, r4				@ set TTBR1 to swapper_pg_dir
#endif
	ldr	r12, [r10, #PROCINFO_INITFUNC]
	add	r12, r12, r10
	ret	r12
1:	b	__enable_mmu
ENDPROC(stext)
	.ltorg
#ifndef CONFIG_XIP_KERNEL
2:	.long	.
	.long	PAGE_OFFSET
#endif

开启mmu后跳转到__mmap_switched?? ??? ?

/*
 * The following fragment of code is executed with the MMU on in MMU mode,
 * and uses absolute addresses; this is not position independent.
 *
 *  r0  = cp#15 control register (exc_ret for M-class)
 *  r1  = machine ID
 *  r2  = atags/dtb pointer
 *  r9  = processor ID
 */
	__INIT
__mmap_switched:

	mov	r7, r1
	mov	r8, r2
	mov	r10, r0

	adr	r4, __mmap_switched_data
	mov	fp, #0

#if defined(CONFIG_XIP_DEFLATED_DATA)
   ARM(	ldr	sp, [r4], #4 )
 THUMB(	ldr	sp, [r4] )
 THUMB(	add	r4, #4 )
	bl	__inflate_kernel_data		@ decompress .data to RAM
	teq	r0, #0
	bne	__error
#elif defined(CONFIG_XIP_KERNEL)
   ARM(	ldmia	r4!, {r0, r1, r2, sp} )
 THUMB(	ldmia	r4!, {r0, r1, r2, r3} )
 THUMB(	mov	sp, r3 )
	sub	r2, r2, r1
	bl	memcpy				@ copy .data to RAM
#endif

   ARM(	ldmia	r4!, {r0, r1, sp} )
 THUMB(	ldmia	r4!, {r0, r1, r3} )
 THUMB(	mov	sp, r3 )
	sub	r2, r1, r0
	mov	r1, #0
	bl	memset				@ clear .bss

	ldmia	r4, {r0, r1, r2, r3}
	str	r9, [r0]			@ Save processor ID
	str	r7, [r1]			@ Save machine type
	str	r8, [r2]			@ Save atags pointer
	cmp	r3, #0
	strne	r10, [r3]			@ Save control register values
	mov	lr, #0
	b	start_kernel
ENDPROC(__mmap_switched)

	.align	2
	.type	__mmap_switched_data, %object
__mmap_switched_data:
#ifdef CONFIG_XIP_KERNEL
#ifndef CONFIG_XIP_DEFLATED_DATA
	.long	_sdata				@ r0
	.long	__data_loc			@ r1
	.long	_edata_loc			@ r2
#endif
	.long	__bss_stop			@ sp (temporary stack in .bss)
#endif

	.long	__bss_start			@ r0
	.long	__bss_stop			@ r1
	.long	init_thread_union + THREAD_START_SP @ sp

	.long	processor_id			@ r0
	.long	__machine_arch_type		@ r1
	.long	__atags_pointer			@ r2
#ifdef CONFIG_CPU_CP15
	.long	cr_alignment			@ r3
#else
M_CLASS(.long	exc_ret)			@ r3
AR_CLASS(.long	0)				@ r3
#endif
	.size	__mmap_switched_data, . - __mmap_switched_data

	__FINIT
	.text

最终将uboot传入的第三个参数r2的内容赋给C变量__atags_pointer中保存。之后调用start_kernel

3.2.3 内核启动阶段start_kernel对设备树的解析匹配

asmlinkage __visible void __init __no_sanitize_address start_kernel(void)
{
	char *command_line;
	char *after_dashes;

	set_task_stack_end_magic(&init_task);
	smp_setup_processor_id();
	debug_objects_early_init();

	cgroup_init_early();

	local_irq_disable();
	early_boot_irqs_disabled = true;

	/*
	 * Interrupts are still disabled. Do necessary setups, then
	 * enable them.
	 */
	boot_cpu_init();
	page_address_init();
	pr_notice("%s", linux_banner);
	early_security_init();
	setup_arch(&command_line);                    //处理命令行信息
	setup_boot_config(command_line);
	setup_command_line(command_line);
	setup_nr_cpu_ids();
	setup_per_cpu_areas();
	smp_prepare_boot_cpu();	/* arch-specific boot-cpu hooks */
	boot_cpu_hotplug_init();

	build_all_zonelists(NULL);
	page_alloc_init();

	pr_notice("Kernel command line: %s\n", saved_command_line);
	/* parameters may set static keys */
	jump_label_init();
	parse_early_param();
	after_dashes = parse_args("Booting kernel",
				  static_command_line, __start___param,
				  __stop___param - __start___param,
				  -1, -1, NULL, &unknown_bootoption);
	if (!IS_ERR_OR_NULL(after_dashes))
		parse_args("Setting init args", after_dashes, NULL, 0, -1, -1,
			   NULL, set_init_arg);
	if (extra_init_args)
		parse_args("Setting extra init args", extra_init_args,
			   NULL, 0, -1, -1, NULL, set_init_arg);

	/*
	 * These use large bootmem allocations and must precede
	 * kmem_cache_init()
	 */
	setup_log_buf(0);
	vfs_caches_init_early();
	sort_main_extable();
	trap_init();
	mm_init();

	ftrace_init();

	/* trace_printk can be enabled here */
	early_trace_init();

	/*
	 * Set up the scheduler prior starting any interrupts (such as the
	 * timer interrupt). Full topology setup happens at smp_init()
	 * time - but meanwhile we still have a functioning scheduler.
	 */
	sched_init();
	/*
	 * Disable preemption - early bootup scheduling is extremely
	 * fragile until we cpu_idle() for the first time.
	 */
	preempt_disable();
	if (WARN(!irqs_disabled(),
		 "Interrupts were enabled *very* early, fixing it\n"))
		local_irq_disable();
	radix_tree_init();

	/*
	 * Set up housekeeping before setting up workqueues to allow the unbound
	 * workqueue to take non-housekeeping into account.
	 */
	housekeeping_init();

	/*
	 * Allow workqueue creation and work item queueing/cancelling
	 * early.  Work item execution depends on kthreads and starts after
	 * workqueue_init().
	 */
	workqueue_init_early();

	rcu_init();

	/* Trace events are available after this */
	trace_init();

	if (initcall_debug)
		initcall_debug_enable();

	context_tracking_init();
	/* init some links before init_ISA_irqs() */
	early_irq_init();
	init_IRQ();
	tick_init();
	rcu_init_nohz();
	init_timers();
	hrtimers_init();
	softirq_init();
	timekeeping_init();

	/*
	 * For best initial stack canary entropy, prepare it after:
	 * - setup_arch() for any UEFI RNG entropy and boot cmdline access
	 * - timekeeping_init() for ktime entropy used in rand_initialize()
	 * - rand_initialize() to get any arch-specific entropy like RDRAND
	 * - add_latent_entropy() to get any latent entropy
	 * - adding command line entropy
	 */
	rand_initialize();
	add_latent_entropy();
	add_device_randomness(command_line, strlen(command_line));
	boot_init_stack_canary();

	time_init();
	perf_event_init();
	profile_init();
	call_function_init();
	WARN(!irqs_disabled(), "Interrupts were enabled early\n");

	early_boot_irqs_disabled = false;
	local_irq_enable();

	kmem_cache_init_late();

	/*
	 * HACK ALERT! This is early. We're enabling the console before
	 * we've done PCI setups etc, and console_init() must be aware of
	 * this. But we do want output early, in case something goes wrong.
	 */
	console_init();
	if (panic_later)
		panic("Too many boot %s vars at `%s'", panic_later,
		      panic_param);

	lockdep_init();

	/*
	 * Need to run this when irqs are enabled, because it wants
	 * to self-test [hard/soft]-irqs on/off lock inversion bugs
	 * too:
	 */
	locking_selftest();

	/*
	 * This needs to be called before any devices perform DMA
	 * operations that might use the SWIOTLB bounce buffers. It will
	 * mark the bounce buffers as decrypted so that their usage will
	 * not cause "plain-text" data to be decrypted when accessed.
	 */
	mem_encrypt_init();

#ifdef CONFIG_BLK_DEV_INITRD
	if (initrd_start && !initrd_below_start_ok &&
	    page_to_pfn(virt_to_page((void *)initrd_start)) < min_low_pfn) {
		pr_crit("initrd overwritten (0x%08lx < 0x%08lx) - disabling it.\n",
		    page_to_pfn(virt_to_page((void *)initrd_start)),
		    min_low_pfn);
		initrd_start = 0;
	}
#endif
	setup_per_cpu_pageset();
	numa_policy_init();
	acpi_early_init();
	if (late_time_init)
		late_time_init();
	sched_clock_init();
	calibrate_delay();
	pid_idr_init();
	anon_vma_init();
#ifdef CONFIG_X86
	if (efi_enabled(EFI_RUNTIME_SERVICES))
		efi_enter_virtual_mode();
#endif
	thread_stack_cache_init();
	cred_init();
	fork_init();
	proc_caches_init();
	uts_ns_init();
	buffer_init();
	key_init();
	security_init();
	dbg_late_init();
	vfs_caches_init();
	pagecache_init();
	signals_init();
	seq_file_init();
	proc_root_init();
	nsfs_init();
	cpuset_init();
	cgroup_init();
	taskstats_init_early();
	delayacct_init();

	poking_init();
	check_bugs();

	acpi_subsystem_init();
	arch_post_acpi_subsys_init();
	sfi_init_late();
	kcsan_init();

	/* Do the rest non-__init'ed, we're now alive */
	arch_call_rest_init();

	prevent_tail_call_optimization();
}

start_kernel
    setup_arch(&command_line);
        setup_processor();
        mdesc = setup_machine_fdt(__atags_pointer);//尝试解析dtb
        if (!mdesc)    //失败则尝试解析tags
            mdesc = setup_machine_tags(__atags_pointer, __machine_arch_type);

setup_machine_fdt
    //检查头部是否合法
    early_init_dt_verify(phys_to_virt(dt_phys))
        fdt_check_header(params)
            if (fdt_magic(fdt) != FDT_MAGIC)
                return -FDT_ERR_BADMAGIC;
            hdrsize = fdt_header_size(fdt);
            /* Bounds check memrsv block */
            /* Bounds check structure block */
            /* Bounds check strings block */
        //dtb地址被保存到全局变量initial_boot_params 
        initial_boot_params = params;
    //解析找到最匹配的机器描述信息compatible = "xlnx,zynq-7000";
    mdesc = of_flat_dt_match_machine(mdesc_best, arch_get_next_mach);
        while ((data = get_next_compat(&compat))) {
            score = of_flat_dt_match(dt_root, compat);//匹配出最佳
            if (score > 0 && score < best_score) {
                best_data = data;
                best_score = score;
            }
        }
    early_init_dt_scan_nodes();

3.2.4 内核与设备树的板级信息匹配

设备树:

/ {
    #address-cells = <1>;
    #size-cells = <1>;
    compatible = "xlnx,zynq-7000";

    ...
};

内核中板级信息(arch/arm/mach-zynq/common.c)

static const char * const zynq_dt_match[] = {
	"xlnx,zynq-7000",
	NULL
};

DT_MACHINE_START(XILINX_EP107, "Xilinx Zynq Platform")
	/* 64KB way size, 8-way associativity, parity disabled */
#ifdef CONFIG_XILINX_PREFETCH
	.l2c_aux_val	= 0x30400000,
	.l2c_aux_mask	= 0xcfbfffff,
#else
	.l2c_aux_val	= 0x00400000,
	.l2c_aux_mask	= 0xffbfffff,
#endif
	.smp		= smp_ops(zynq_smp_ops),
	.map_io		= zynq_map_io,
	.init_irq	= zynq_irq_init,
	.init_machine	= zynq_init_machine,
	.init_late	= zynq_init_late,
	.init_time	= zynq_timer_init,
	.dt_compat	= zynq_dt_match,
	.reserve	= zynq_memory_init,
MACHINE_END

3.2.5 早期初始化对根节点chosen等属性的解析】

void __init early_init_dt_scan_nodes(void)                              
{                                                                       
    int rc = 0;                                                         
                                                                        
    /* Retrieve various information from the /chosen node */            
    rc = of_scan_flat_dt(early_init_dt_scan_chosen, boot_command_line); 
    if (!rc)                                                            
        pr_warn("No chosen node found, continuing without\n");          
                                                                        
    /* Initialize {size,address}-cells info */                          
    of_scan_flat_dt(early_init_dt_scan_root, NULL);                     
                                                                        
    /* Setup memory, calling early_init_dt_add_memory_arch */           
    of_scan_flat_dt(early_init_dt_scan_memory, NULL);                   
}                            

3.2.6 早期初始化对所有子节点的解析转换为device_node

????????从initial_boot_params处解析设备树生成根of_root。populate_node、populate_properties处理每个节点及其属性。

start_kernel // init/main.c
    setup_arch(&command_line);  // arch/arm/kernel/setup.c
        arm_memblock_init(mdesc);   // arch/arm/kernel/setup.c
            early_init_fdt_reserve_self();
                    /* Reserve the dtb region */
                    // 把DTB所占区域保留下来, 即调用: memblock_reserve
                    early_init_dt_reserve_memory_arch(__pa(initial_boot_params),
                                      fdt_totalsize(initial_boot_params),
                                      0);           
            early_init_fdt_scan_reserved_mem();  // 根据dtb中的memreserve信息, 调用memblock_reserve
        //从initial_boot_params处解析设备树生成根of_root
        unflatten_device_tree();    // arch/arm/kernel/setup.c
            __unflatten_device_tree(initial_boot_params, NULL, &of_root,
                        early_init_dt_alloc_memory_arch, false);            // drivers/of/fdt.c
                
                /* First pass, scan for size */
                size = unflatten_dt_nodes(blob, NULL, dad, NULL);
                
                /* Allocate memory for the expanded device tree */
                mem = dt_alloc(size + 4, __alignof__(struct device_node));
                
                /* Second pass, do actual unflattening */
                unflatten_dt_nodes(blob, mem, dad, mynodes);
                    populate_node
                        np = unflatten_dt_alloc(mem, sizeof(struct device_node) + allocl,
                                    __alignof__(struct device_node));
                        
                        np->full_name = fn = ((char *)np) + sizeof(*np);
                        
                        populate_properties
                                pp = unflatten_dt_alloc(mem, sizeof(struct property),
                                            __alignof__(struct property));
                            
                                pp->name   = (char *)pname;
                                pp->length = sz;
                                pp->value  = (__be32 *)val;

3.2.7 早期初始化device_node转换为platform_device

a. of_platform_default_populate_init (drivers/of/platform.c) 被调用到过程:
start_kernel     // init/main.c
    rest_init();
        pid = kernel_thread(kernel_init, NULL, CLONE_FS);
                    kernel_init
                        kernel_init_freeable();
                            do_basic_setup();
                                do_initcalls();
                                    for (level = 0; level < ARRAY_SIZE(initcall_levels) - 1; level++)
                                        do_initcall_level(level);  // 比如 do_initcall_level(3)
                                                                               for (fn = initcall_levels[3]; fn < initcall_levels[3+1]; fn++)
                                                                                    do_one_initcall(initcall_from_entry(fn));  // 就是调用"arch_initcall_sync(fn)"中定义的fn函数

b. of_platform_default_populate_init  (drivers/of/platform.c) 生成platform_device的过程:
of_platform_default_populate_init
    of_platform_default_populate(NULL, NULL, NULL);
        of_platform_populate(NULL, of_default_bus_match_table, NULL, NULL)
            for_each_child_of_node(root, child) {
                rc = of_platform_bus_create(child, matches, lookup, parent, true);  // 调用过程看下面
                            dev = of_device_alloc(np, bus_id, parent);   // 根据device_node节点的属性设置platform_device的resource
                if (rc) {
                    of_node_put(child);
                    break;
                }
            }
            
c. of_platform_bus_create(bus, matches, ...)的调用过程(处理bus节点生成platform_devie, 并决定是否处理它的子节点):
        dev = of_platform_device_create_pdata(bus, bus_id, platform_data, parent);  // 生成bus节点的platform_device结构体
        if (!dev || !of_match_node(matches, bus))  // 如果bus节点的compatile属性不吻合matches成表, 就不处理它的子节点
            return 0;

        for_each_child_of_node(bus, child) {    // 取出每一个子节点
            pr_debug("   create child: %pOF\n", child);
            rc = of_platform_bus_create(child, matches, lookup, &dev->dev, strict);   // 处理它的子节点, of_platform_bus_create是一个递归调用
            if (rc) {
                of_node_put(child);
                break;
            }
        }

第三节总结

  • 内核启动前期:解析了设备树中根节点的compatile,并找到最匹配的板级信息
  • 内核启动前期:解析了根节点的属性信息,如chosen、memory等
  • 内核启动前期:遍历了dtb中的所有节点,并生成了device_node
  • 内核启动前期:遍历device_node,生成了设备树中的platform_device
  • device_node信息被配置到platform_device中的res信息和dev->of_node

  系统运维 最新文章
配置小型公司网络WLAN基本业务(AC通过三层
如何在交付运维过程中建立风险底线意识,提
快速传输大文件,怎么通过网络传大文件给对
从游戏服务端角度分析移动同步(状态同步)
MySQL使用MyCat实现分库分表
如何用DWDM射频光纤技术实现200公里外的站点
国内顺畅下载k8s.gcr.io的镜像
自动化测试appium
ctfshow ssrf
Linux操作系统学习之实用指令(Centos7/8均
上一篇文章      下一篇文章      查看所有文章
加:2021-09-01 12:21:05  更:2021-09-01 12:21:11 
 
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁

360图书馆 购物 三丰科技 阅读网 日历 万年历 2024年11日历 -2024/11/15 11:37:27-

图片自动播放器
↓图片自动播放器↓
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
图片批量下载器
↓批量下载图片,美女图库↓
  网站联系: qq:121756557 email:121756557@qq.com  IT数码