IT数码 购物 网址 头条 软件 日历 阅读 图书馆
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
图片批量下载器
↓批量下载图片,美女图库↓
图片自动播放器
↓图片自动播放器↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁
 
   -> 系统运维 -> Jetson Nano踩坑记录贴其五 -> 正文阅读

[系统运维]Jetson Nano踩坑记录贴其五

tson Nano踩坑记录贴——程序源码及其自启动)


前言

本次比赛顺利结束,最终也成功拿下了全国一等奖,在此我将本次使用的代码进行开源,主要功能就是开机时自启动nano中的识别程序,并将识别结果通过串口输出。踩坑记录贴也将到此为止。同时在使用此自启动程序时最好提前将ssh配置好,以避免后续无法进入gui界面。


一、程序源码

yolodetect.py

import time
import cv2
import pycuda.autoinit  # This is needed for initializing CUDA driver
import numpy as np
import ctypes
import tensorrt as trt
import pycuda.driver as cuda

import threading
import random

import serial as ser
import struct,time

INPUT_W = 416
INPUT_H = 416
CONF_THRESH = 0.2
IOU_THRESHOLD = 0.4
se = ser.Serial('/dev/ttyTHS1',115200,timeout=1) #选择串口及波特率
categories = ['0','1','2','3','4']   #修改为自己的模型标签

def plot_one_box(x, img, color=None, label=None, line_thickness=None):
    """
    description: Plots one bounding box on image img,
                 this function comes from YoLov5 project.
    param:
        x:      a box likes [x1,y1,x2,y2]
        img:    a opencv image object
        color:  color to draw rectangle, such as (0,255,0)
        label:  str
        line_thickness: int
    return:
        no return

    """
    tl = (
            line_thickness or round(0.002 * (img.shape[0] + img.shape[1]) / 2) + 1
    )  # line/font thickness
    color = color or [random.randint(0, 255) for _ in range(3)]
    c1, c2 = (int(x[0]), int(x[1])), (int(x[2]), int(x[3]))
    cv2.rectangle(img, c1, c2, color, thickness=tl, lineType=cv2.LINE_AA)
    if label:
        tf = max(tl - 1, 1)  # font thickness
        t_size = cv2.getTextSize(label, 0, fontScale=tl / 3, thickness=tf)[0]
        c2 = c1[0] + t_size[0], c1[1] - t_size[1] - 3
        cv2.rectangle(img, c1, c2, color, -1, cv2.LINE_AA)  # filled
        cv2.putText(
            img,
            label,
            (c1[0], c1[1] - 2),
            0,
            tl / 3,
            [225, 255, 255],
            thickness=tf,
            lineType=cv2.LINE_AA,
        )


def draw_boxes(image_raw, result_boxes, result_scores, result_classid):
    for i in range(len(result_boxes)):
        box = result_boxes[i]
        plot_one_box(
            box,
            image_raw,
            label="{}:{:.2f}".format(
                categories[int(result_classid[i])], result_scores[i]
            ),
        )
    return image_raw

class YoLov5TRT(object):
    """
    description: A YOLOv5 class that warps TensorRT ops, preprocess and postprocess ops.
    """

    def __init__(self, engine_file_path):
        # Create a Context on this device,
        self.cfx = cuda.Device(0).make_context()
        stream = cuda.Stream()
        TRT_LOGGER = trt.Logger(trt.Logger.INFO)
        runtime = trt.Runtime(TRT_LOGGER)

        # Deserialize the engine from file
        with open(engine_file_path, "rb") as f:
            engine = runtime.deserialize_cuda_engine(f.read())
        context = engine.create_execution_context()

        host_inputs = []
        cuda_inputs = []
        host_outputs = []
        cuda_outputs = []
        bindings = []

        for binding in engine:
            size = trt.volume(engine.get_binding_shape(binding)) * engine.max_batch_size
            dtype = trt.nptype(engine.get_binding_dtype(binding))
            # Allocate host and device buffers
            host_mem = cuda.pagelocked_empty(size, dtype)
            cuda_mem = cuda.mem_alloc(host_mem.nbytes)
            # Append the device buffer to device bindings.
            bindings.append(int(cuda_mem))
            # Append to the appropriate list.
            if engine.binding_is_input(binding):
                host_inputs.append(host_mem)
                cuda_inputs.append(cuda_mem)
            else:
                host_outputs.append(host_mem)
                cuda_outputs.append(cuda_mem)

        # Store
        self.stream = stream
        self.context = context
        self.engine = engine
        self.host_inputs = host_inputs
        self.cuda_inputs = cuda_inputs
        self.host_outputs = host_outputs
        self.cuda_outputs = cuda_outputs
        self.bindings = bindings

    # 释放引擎,释放GPU显存,释放CUDA流
    def __del__(self):
        print("delete object to release memory")

    def infer(self, image_raw):
        threading.Thread.__init__(self)
        # Make self the active context, pushing it on top of the context stack.
        self.cfx.push()
        # Restore
        stream = self.stream
        context = self.context
        engine = self.engine
        host_inputs = self.host_inputs
        cuda_inputs = self.cuda_inputs
        host_outputs = self.host_outputs
        cuda_outputs = self.cuda_outputs
        bindings = self.bindings
        # Do image preprocess
        input_image, image_raw, origin_h, origin_w = self.preprocess_image(
            image_raw
        )
        # Copy input image to host buffer
        np.copyto(host_inputs[0], input_image.ravel())
        # Transfer input data  to the GPU.
        cuda.memcpy_htod_async(cuda_inputs[0], host_inputs[0], stream)
        # Run inference.
        context.execute_async(bindings=bindings, stream_handle=stream.handle)
        # Transfer predictions back from the GPU.
        cuda.memcpy_dtoh_async(host_outputs[0], cuda_outputs[0], stream)
        # Synchronize the stream
        stream.synchronize()
        # Remove any context from the top of the context stack, deactivating it.
        self.cfx.pop()
        # Here we use the first row of output in that batch_size = 1
        output = host_outputs[0]
        # Do postprocess
        result_boxes, result_scores, result_classid = self.post_process(
            output, origin_h, origin_w
        )

        return image_raw, result_boxes, result_scores, result_classid

    def destroy(self):
        # Remove any context from the top of the context stack, deactivating it.
        self.cfx.pop()

    def preprocess_image(self, image_raw):
        """
        description: Read an image from image path, convert it to RGB,
                     resize and pad it to target size, normalize to [0,1],
                     transform to NCHW format.
        param:
            input_image_path: str, image path
        return:
            image:  the processed image
            image_raw: the original image
            h: original height
            w: original width
        """
        h, w, c = image_raw.shape
        image = cv2.cvtColor(image_raw, cv2.COLOR_BGR2RGB)
        # Calculate widht and height and paddings
        r_w = INPUT_W / w
        r_h = INPUT_H / h
        if r_h > r_w:
            tw = INPUT_W
            th = int(r_w * h)
            tx1 = tx2 = 0
            ty1 = int((INPUT_H - th) / 2)
            ty2 = INPUT_H - th - ty1
        else:
            tw = int(r_h * w)
            th = INPUT_H
            tx1 = int((INPUT_W - tw) / 2)
            tx2 = INPUT_W - tw - tx1
            ty1 = ty2 = 0
        # Resize the image with long side while maintaining ratio
        image = cv2.resize(image, (tw, th))
        # Pad the short side with (128,128,128)
        image = cv2.copyMakeBorder(
            image, ty1, ty2, tx1, tx2, cv2.BORDER_CONSTANT, (128, 128, 128)
        )
        image = image.astype(np.float32)
        # Normalize to [0,1]
        image /= 255.0
        # HWC to CHW format:
        image = np.transpose(image, [2, 0, 1])
        # CHW to NCHW format
        image = np.expand_dims(image, axis=0)
        # Convert the image to row-major order, also known as "C order":
        image = np.ascontiguousarray(image)
        return image, image_raw, h, w

    def xywh2xyxy(self, origin_h, origin_w, x):
        """
        description:    Convert nx4 boxes from [x, y, w, h] to [x1, y1, x2, y2] where xy1=top-left, xy2=bottom-right
        param:
            origin_h:   height of original image
            origin_w:   width of original image
            x:          A boxes tensor, each row is a box [center_x, center_y, w, h]
        return:
            y:          A boxes tensor, each row is a box [x1, y1, x2, y2]
        """
        # y = torch.zeros_like(x) if isinstance(x, torch.Tensor) else np.zeros_like(x)
        y = np.zeros_like(x)
        r_w = INPUT_W / origin_w
        r_h = INPUT_H / origin_h
        if r_h > r_w:
            y[:, 0] = x[:, 0] - x[:, 2] / 2
            y[:, 2] = x[:, 0] + x[:, 2] / 2
            y[:, 1] = x[:, 1] - x[:, 3] / 2 - (INPUT_H - r_w * origin_h) / 2
            y[:, 3] = x[:, 1] + x[:, 3] / 2 - (INPUT_H - r_w * origin_h) / 2
            y /= r_w
        else:
            y[:, 0] = x[:, 0] - x[:, 2] / 2 - (INPUT_W - r_h * origin_w) / 2
            y[:, 2] = x[:, 0] + x[:, 2] / 2 - (INPUT_W - r_h * origin_w) / 2
            y[:, 1] = x[:, 1] - x[:, 3] / 2
            y[:, 3] = x[:, 1] + x[:, 3] / 2
            y /= r_h

        return y

    def nms(self, boxes, scores, iou_threshold=IOU_THRESHOLD):
        x1 = boxes[:, 0]
        y1 = boxes[:, 1]
        x2 = boxes[:, 2]
        y2 = boxes[:, 3]
        areas = (y2 - y1 + 1) * (x2 - x1 + 1)
        scores = scores
        keep = []
        index = scores.argsort()[::-1]
        while index.size > 0:
            i = index[0]  # every time the first is the biggst, and add it directly
            keep.append(i)

            x11 = np.maximum(x1[i], x1[index[1:]])  # calculate the points of overlap
            y11 = np.maximum(y1[i], y1[index[1:]])
            x22 = np.minimum(x2[i], x2[index[1:]])
            y22 = np.minimum(y2[i], y2[index[1:]])

            w = np.maximum(0, x22 - x11 + 1)  # the weights of overlap
            h = np.maximum(0, y22 - y11 + 1)  # the height of overlap

            overlaps = w * h
            ious = overlaps / (areas[i] + areas[index[1:]] - overlaps)

            idx = np.where(ious <= iou_threshold)[0]
            index = index[idx + 1]  # because index start from 1

        return keep

    def post_process(self, output, origin_h, origin_w):
        """
        description: postprocess the prediction
        param:
            output:     A tensor likes [num_boxes,cx,cy,w,h,conf,cls_id, cx,cy,w,h,conf,cls_id, ...]
            origin_h:   height of original image
            origin_w:   width of original image
        return:
            result_boxes: finally boxes, a boxes tensor, each row is a box [x1, y1, x2, y2]
            result_scores: finally scores, a tensor, each element is the score correspoing to box
            result_classid: finally classid, a tensor, each element is the classid correspoing to box
        """
        # Get the num of boxes detected
        num = int(output[0])
        # Reshape to a two dimentional ndarray
        pred = np.reshape(output[1:], (-1, 6))[:num, :]
        # to a torch Tensor
        # pred = torch.Tensor(pred).cuda()
        # Get the boxes
        boxes = pred[:, :4]
        # Get the scores
        scores = pred[:, 4]
        # Get the classid
        classid = pred[:, 5]
        # Choose those boxes that score > CONF_THRESH
        si = scores > CONF_THRESH
        boxes = boxes[si, :]
        scores = scores[si]
        classid = classid[si]
        # Trandform bbox from [center_x, center_y, w, h] to [x1, y1, x2, y2]
        boxes = self.xywh2xyxy(origin_h, origin_w, boxes)
        # Do nms
        # indices = torchvision.ops.nms(boxes, scores, iou_threshold=IOU_THRESHOLD).cpu()
        # result_boxes = boxes[indices, :].cpu()
        # result_scores = scores[indices].cpu()
        # result_classid = classid[indices].cpu()
        # return result_boxes, result_scores, result_classid
        indices = self.nms(boxes, scores, IOU_THRESHOLD)
        result_boxes = boxes[indices, :]
        result_scores = scores[indices]
        result_classid = classid[indices]
        return result_boxes, result_scores, result_classid

def detect_one(img, yolov5_wrapper):
    full_scrn = False
    tic = time.clock()
    ##开始检测,并将结果写到result.jpg中
    img, result_boxes, result_scores, result_classid = yolov5_wrapper.infer(img)
    toc = time.clock()
    curr_fps = (toc - tic)
    print("boxes: "+str(result_boxes))
    print("clss: "+str(result_classid))
    print("confs: "+str(result_scores))
    img = draw_boxes(img, result_boxes, result_scores, result_classid)
    cv2.imwrite("result.jpg",img)
    print("time: "+str(curr_fps)+"(sec)")

def main_one():
    filename = "1.jpg"
    img = cv2.imread(filename)
    # load custom plugins
    PLUGIN_LIBRARY = "yolov5s/libmyplugins.so"
    ctypes.CDLL(PLUGIN_LIBRARY)
    engine_file_path = "yolov5s/yolov5s.engine"

    # a  YoLov5TRT instance
    yolov5_wrapper = YoLov5TRT(engine_file_path)
    print("start detection!")
    detect_one(img, yolov5_wrapper)
    cv2.destroyAllWindows()
    print("finish!")

def detect_camera(camera, yolov5_wrapper):
    #cnt=0
    ##开始循环检测
    while True:
        ret,img = camera.read()  # usb摄像头用这个
        #img = camera.read()
        img, result_boxes, result_scores, result_classid = yolov5_wrapper.infer(img)
        img = draw_boxes(img, result_boxes, result_scores, result_classid)
        if(len(result_classid)):
           for i in range(len(result_classid)):
          #    cnt=cnt+1
           #   print(cnt)
               if result_classid[i]==0:   #识别标签为0
                   if(result_scores[i]>=0.26):     #置信度大于0.26才输出
                       print("bottle")   #打印,后期可删除
                       se.write('a'.encode('utf-8'))
                   else:
                       se.write('f'.encode('utf-8')) 
               elif result_classid[i]==1:
                   if(result_scores[i]>=0.26):
                       print("cup")
                       se.write('b'.encode('utf-8'))
                   else:
                       se.write('f'.encode('utf-8')) 
               elif result_classid[i]==2:
                   if(result_scores[i]>=0.26):
                       print("paper")
                       se.write('c'.encode('utf-8'))
                   else:
                       se.write('f'.encode('utf-8')) 
               elif result_classid[i]==3:
                   if(result_scores[i]>=0.26):
                       print("orange")
                       se.write('d'.encode('utf-8'))
                   else:
                       se.write('f'.encode('utf-8')) 
               elif result_classid[i]==4:
                   if(result_scores[i]>=0.63):   
                       print("battery")
                       se.write('e'.encode('utf-8'))
                   else:
                       se.write('f'.encode('utf-8')) 
        else:
            se.write('f'.encode('utf-8')) #未识别到任何标签

        #cv2.namedWindow("result", 0)
        #cv2.resizeWindow("result", 640, 480)
        cv2.imshow("result", img)
        if cv2.waitKey(1) == ord('q'):
            break

def main_camera():
    camera = cv2.VideoCapture(0)  # usb摄像头用这个,也可以用jetcam中的usb接口
    #camera = CSICamera(capture_device=0, width=224, height=224)
    # load custom plugins
    camera.set(3,640)
    camera.set(4,480)
    PLUGIN_LIBRARY = "build/libmyplugins.so"
    ctypes.CDLL(PLUGIN_LIBRARY)
    engine_file_path = "build/test723.engine" #第四章中获得的engine名

    # YoLov5TRT instance
    yolov5_wrapper = YoLov5TRT(engine_file_path)
    print("start detection!")
    detect_camera(camera, yolov5_wrapper)
    camera.release()  #使用cv方法打开摄像头才需要这句
    cv2.destroyAllWindows()
    print("\nfinish!")

if __name__=="__main__":
    main_camera()

二、自启动

1.执行自启动

每次执行前需要开启串口,否则程序无法正常运行
task.sh

#!/bin/bash
#command content
sudo chmod 777 /dev/ttyTHS1   #使用程序里那个串口
cd /home/xiao/tensorrtx/yolov5
python3 yolodetect.py
exit 0

2.赋予权限

由于要开启串口,需要给与其执行sudo的权限

quanxian.sh

#! /bin/bash
echo '******' | sudo -S "./task.sh"  #******修改为自己系统的密码
wait
exit 0

在这里插入图片描述

  系统运维 最新文章
配置小型公司网络WLAN基本业务(AC通过三层
如何在交付运维过程中建立风险底线意识,提
快速传输大文件,怎么通过网络传大文件给对
从游戏服务端角度分析移动同步(状态同步)
MySQL使用MyCat实现分库分表
如何用DWDM射频光纤技术实现200公里外的站点
国内顺畅下载k8s.gcr.io的镜像
自动化测试appium
ctfshow ssrf
Linux操作系统学习之实用指令(Centos7/8均
上一篇文章      下一篇文章      查看所有文章
加:2021-09-04 17:57:06  更:2021-09-04 17:58:20 
 
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁

360图书馆 购物 三丰科技 阅读网 日历 万年历 2024年11日历 -2024/11/15 13:49:59-

图片自动播放器
↓图片自动播放器↓
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
图片批量下载器
↓批量下载图片,美女图库↓
  网站联系: qq:121756557 email:121756557@qq.com  IT数码