IT数码 购物 网址 头条 软件 日历 阅读 图书馆
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
图片批量下载器
↓批量下载图片,美女图库↓
图片自动播放器
↓图片自动播放器↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁
 
   -> 系统运维 -> ArrayList源码详解 -> 正文阅读

[系统运维]ArrayList源码详解

一、结构图

在这里插入图片描述

二、ArrayList类介绍

1、变量

// 初始容积为10
private static final int DEFAULT_CAPACITY = 10;

// 维护一个空的数组共享实例
private static final Object[] EMPTY_ELEMENTDATA = {};


private static final Object[] DEFAULTCAPACITY_EMPTY_ELEMENTDATA = {};

// 缓冲数组,缓冲数组长度是ArrayList的容积。
// 当第一次添加数据的时候,会把长度设置为10。
// transient代表不进行序列化。
transient Object[] elementData;

// ArrayList中元素的个数
private int size;

2、构造方法

public ArrayList(int initialCapacity) {
    if (initialCapacity > 0) {
        this.elementData = new Object[initialCapacity];
    } else if (initialCapacity == 0) {
        this.elementData = EMPTY_ELEMENTDATA;
    } else {
        throw new IllegalArgumentException("Illegal Capacity: "+
                                           initialCapacity);
    }
}

创建ArrayList并指定初始化容量,若容量等于0则将缓冲数组置为空。

public ArrayList() {
    this.elementData = DEFAULTCAPACITY_EMPTY_ELEMENTDATA;
}

空参构造器将缓冲数组置为空。

public ArrayList(Collection<? extends E> c) {
    elementData = c.toArray();
    if ((size = elementData.length) != 0) {
        // c.toArray might (incorrectly) not return Object[] (see 6260652)
        if (elementData.getClass() != Object[].class)
            elementData = Arrays.copyOf(elementData, size, Object[].class);
    } else {
        // replace with empty array.
        this.elementData = EMPTY_ELEMENTDATA;
    }
}

将集合c转换为数组赋值给缓冲数组,若c的大小不为0则判断缓冲数组的类对象是不是Object[].class,如果是就把数组复制一遍给缓冲数组,但是它这里为什么要判断一下它是不是Object[].class呢,这里是官方的一个bug,我们来看一下下面的代码

public static void main(String[] args) {

    Object[] elementData = new Integer[5];
    // class [Ljava.lang.Integer;
    System.out.println(elementData.getClass());
	// java.lang.ArrayStoreException
    elementData[0] = new Object();
}

以上代码会报错java.lang.ArrayStoreException,也就是说当数组中都是同一元素类型的时候,我们把数组赋值给Object数组,Object数组的类型会发生改变,这时候我们再向其中加入Object类型对象就会报错,为了避免这种情况的发生,我们会在此处判断是否是Object数组类型的对象,如果不是就调用Arrays.copyOf将其转换为Object数组类型。

public void trimToSize() {
    modCount++;
    if (size < elementData.length) {
        elementData = (size == 0)
          ? EMPTY_ELEMENTDATA
          : Arrays.copyOf(elementData, size);
    }
}

清除缓冲数组中的剩余空间。注意这里数组结构发生改变,所以modCount加一。

public void ensureCapacity(int minCapacity) {
    int minExpand = (elementData != DEFAULTCAPACITY_EMPTY_ELEMENTDATA)
        // any size if not default element table
        ? 0
        // larger than default for default empty table. It's already
        // supposed to be at default size.
        : DEFAULT_CAPACITY;

    if (minCapacity > minExpand) {
        ensureExplicitCapacity(minCapacity);
    }
}

private void ensureExplicitCapacity(int minCapacity) {
    modCount++;

    // overflow-conscious code
    if (minCapacity - elementData.length > 0)
        grow(minCapacity);
}

private void grow(int minCapacity) {
    // overflow-conscious code
    int oldCapacity = elementData.length;
    int newCapacity = oldCapacity + (oldCapacity >> 1);
    if (newCapacity - minCapacity < 0)
        newCapacity = minCapacity;
    if (newCapacity - MAX_ARRAY_SIZE > 0)
        newCapacity = hugeCapacity(minCapacity);
    // minCapacity is usually close to size, so this is a win:
    elementData = Arrays.copyOf(elementData, newCapacity);
}

private static int hugeCapacity(int minCapacity) {
    if (minCapacity < 0) // overflow
        throw new OutOfMemoryError();
    return (minCapacity > MAX_ARRAY_SIZE) ?
        Integer.MAX_VALUE :
        MAX_ARRAY_SIZE;
}

第一行是为了保证最小容量要大于默认值10,之后扩容的时候先扩容为原来的1.5倍,若1.5倍不够就把传进去的minCapacity当作新的容量,若新容量大于最大数组容量将容量看情况置为最大数组容量或者最大整数。

public int size() {
    return size;
}

public boolean isEmpty() {
    return size == 0;
}

easy

public boolean contains(Object o) {
    return indexOf(o) >= 0;
}

public int indexOf(Object o) {
    if (o == null) {
        for (int i = 0; i < size; i++)
            if (elementData[i]==null)
                return i;
    } else {
        for (int i = 0; i < size; i++)
            if (o.equals(elementData[i]))
                return i;
    }
    return -1;
}

public int lastIndexOf(Object o) {
    if (o == null) {
        for (int i = size-1; i >= 0; i--)
            if (elementData[i]==null)
                return i;
    } else {
        for (int i = size-1; i >= 0; i--)
            if (o.equals(elementData[i]))
                return i;
    }
    return -1;
}

就是循环判断。

public Object clone() {
    try {
        ArrayList<?> v = (ArrayList<?>) super.clone();
        v.elementData = Arrays.copyOf(elementData, size);
        v.modCount = 0;
        return v;
    } catch (CloneNotSupportedException e) {
        // this shouldn't happen, since we are Cloneable
        throw new InternalError(e);
    }
}

浅克隆,还不忘将modCount重置,细节。

public Object[] toArray() {
    return Arrays.copyOf(elementData, size);
}

public <T> T[] toArray(T[] a) {
    if (a.length < size)
        // Make a new array of a's runtime type, but my contents:
        return (T[]) Arrays.copyOf(elementData, size, a.getClass());
    System.arraycopy(elementData, 0, a, 0, size);
    if (a.length > size)
        a[size] = null;
    return a;
}

我这里只介绍第二个方法,这个方法首先若传入的数组长度小于size,就复制一份新的给它,若大于等于size,就把缓冲数组中的内容传给a,并将下一个元素置为null代表结束位置,但是如果缓冲数组中有null元素怎么办呢?你就不知道什么时候结束了呀。官方文档也说了,仅当缓冲数组中没有空元素你才可以认为这是结束标志。

E elementData(int index) {
    return (E) elementData[index];
}

public E get(int index) {
    rangeCheck(index);

    return elementData(index);
}

做了范围判断

public E set(int index, E element) {
    rangeCheck(index);

    E oldValue = elementData(index);
    elementData[index] = element;
    return oldValue;
}

修改值并将旧值返回。

public boolean add(E e) {
    ensureCapacityInternal(size + 1);  // Increments modCount!!
    elementData[size++] = e;
    return true;
}

private void ensureCapacityInternal(int minCapacity) {
    if (elementData == DEFAULTCAPACITY_EMPTY_ELEMENTDATA) {
        minCapacity = Math.max(DEFAULT_CAPACITY, minCapacity);
    }

    ensureExplicitCapacity(minCapacity);
}

private void ensureExplicitCapacity(int minCapacity) {
    modCount++;

    // overflow-conscious code
    if (minCapacity - elementData.length > 0)
        grow(minCapacity);
}

先判断是否需要扩容再将e添加到数组后。

public void add(int index, E element) {
    rangeCheckForAdd(index);

    ensureCapacityInternal(size + 1);  // Increments modCount!!
    System.arraycopy(elementData, index, elementData, index + 1,
                     size - index);
    elementData[index] = element;
    size++;
}

首先判断范围是否合法,再判断是否需要扩容,之后将调用System.arraycopy方法将数组下标index及以后的元素后移一位,最后赋值。

public E remove(int index) {
    rangeCheck(index);

    modCount++;
    E oldValue = elementData(index);

    int numMoved = size - index - 1;
    if (numMoved > 0)
        System.arraycopy(elementData, index+1, elementData, index,
                         numMoved);
    elementData[--size] = null; // clear to let GC do its work

    return oldValue;
}

移除并返回下标为index的元素。numMoved是要移动的元素数量,如果大于0就移动。最后将size-1,并将缓冲数组最后一个元素置为空。

public boolean remove(Object o) {
    if (o == null) {
        for (int index = 0; index < size; index++)
            if (elementData[index] == null) {
                fastRemove(index);
                return true;
            }
    } else {
        for (int index = 0; index < size; index++)
            if (o.equals(elementData[index])) {
                fastRemove(index);
                return true;
            }
    }
    return false;
}

private void fastRemove(int index) {
    modCount++;
    int numMoved = size - index - 1;
    if (numMoved > 0)
        System.arraycopy(elementData, index+1, elementData, index,
                         numMoved);
    elementData[--size] = null; // clear to let GC do its work
}

这里它没有调用刚刚的remove方法是因为fastRemove少了一个判断,会快一些,细节啊!

public void clear() {
    modCount++;

    // clear to let GC do its work
    for (int i = 0; i < size; i++)
        elementData[i] = null;

    size = 0;
}

清空缓冲数组并将size置为0。

public boolean addAll(Collection<? extends E> c) {
    Object[] a = c.toArray();
    int numNew = a.length;
    ensureCapacityInternal(size + numNew);  // Increments modCount
    System.arraycopy(a, 0, elementData, size, numNew);
    size += numNew;
    return numNew != 0;
}

先决定是否扩容,之后将a数组内容添加到elementData之后,改变size大小。

public boolean addAll(int index, Collection<? extends E> c) {
    rangeCheckForAdd(index);

    Object[] a = c.toArray();
    int numNew = a.length;
    ensureCapacityInternal(size + numNew);  // Increments modCount

    int numMoved = size - index;
    if (numMoved > 0)
        System.arraycopy(elementData, index, elementData, index + numNew,
                         numMoved);

    System.arraycopy(a, 0, elementData, index, numNew);
    size += numNew;
    return numNew != 0;
}

这里的好多地方和String的源码类似呀,它这里也是先将数组后移,再将a的值赋给数组。

protected void removeRange(int fromIndex, int toIndex) {
    modCount++;
    int numMoved = size - toIndex;
    System.arraycopy(elementData, toIndex, elementData, fromIndex,
                     numMoved);

    // clear to let GC do its work
    int newSize = size - (toIndex-fromIndex);
    for (int i = newSize; i < size; i++) {
        elementData[i] = null;
    }
    size = newSize;
}

先将数组toIndex后的内容左移,再将elementData中的无用数据置为null。

public boolean removeAll(Collection<?> c) {
    Objects.requireNonNull(c);
    return batchRemove(c, false);
}

public boolean retainAll(Collection<?> c) {
    Objects.requireNonNull(c);
    return batchRemove(c, true);
}

private boolean batchRemove(Collection<?> c, boolean complement) {
    final Object[] elementData = this.elementData;
    int r = 0, w = 0;
    boolean modified = false;
    try {
        for (; r < size; r++)
            if (c.contains(elementData[r]) == complement)
                elementData[w++] = elementData[r];
    } finally {
        // Preserve behavioral compatibility with AbstractCollection,
        // even if c.contains() throws.
        if (r != size) {
            System.arraycopy(elementData, r,
                             elementData, w,
                             size - r);
            w += size - r;
        }
        if (w != size) {
            // clear to let GC do its work
            for (int i = w; i < size; i++)
                elementData[i] = null;
            modCount += size - w;
            size = w;
            modified = true;
        }
    }
    return modified;
}

在finally语句块中,如果r != size说明没有遍历完,我们就把剩余的元素放到w后面并把w后面的元素置为null。

private void writeObject(java.io.ObjectOutputStream s)
    throws java.io.IOException{
    // Write out element count, and any hidden stuff
    int expectedModCount = modCount;
    s.defaultWriteObject();

    // Write out size as capacity for behavioural compatibility with clone()
    s.writeInt(size);

    // Write out all elements in the proper order.
    for (int i=0; i<size; i++) {
        s.writeObject(elementData[i]);
    }

    if (modCount != expectedModCount) {
        throw new ConcurrentModificationException();
    }
}

private void readObject(java.io.ObjectInputStream s)
    throws java.io.IOException, ClassNotFoundException {
    elementData = EMPTY_ELEMENTDATA;

    // Read in size, and any hidden stuff
    s.defaultReadObject();

    // Read in capacity
    s.readInt(); // ignored

    if (size > 0) {
        // be like clone(), allocate array based upon size not capacity
        ensureCapacityInternal(size);

        Object[] a = elementData;
        // Read in all elements in the proper order.
        for (int i=0; i<size; i++) {
            a[i] = s.readObject();
        }
    }
}

对象序列化的时候介绍。

public ListIterator<E> listIterator(int index) {
    if (index < 0 || index > size)
        throw new IndexOutOfBoundsException("Index: "+index);
    return new ListItr(index);
}

// 这个类继承了Itr类,所以说就不用写next相关方法,只需要写previous方法即可
private class ListItr extends Itr implements ListIterator<E> {

	// 初始化从哪开始迭代
    ListItr(int index) {
        super();
        cursor = index;
    }
	
    public boolean hasPrevious() {
        return cursor != 0;
    }

    public int nextIndex() {
        return cursor;
    }

    public int previousIndex() {
        return cursor - 1;
    }

    @SuppressWarnings("unchecked")
    public E previous() {
        checkForComodification();
        int i = cursor - 1;
        if (i < 0)
            throw new NoSuchElementException();
        Object[] elementData = ArrayList.this.elementData;
        if (i >= elementData.length)
            throw new ConcurrentModificationException();
        cursor = i;
        return (E) elementData[lastRet = i];
    }

	// 这里虽然调用ArrayList的set方法,但是它并没有将旧值返回。
    public void set(E e) {
        if (lastRet < 0)
            throw new IllegalStateException();
        checkForComodification();

        try {
            ArrayList.this.set(lastRet, e);
        } catch (IndexOutOfBoundsException ex) {
            throw new ConcurrentModificationException();
        }
    }

	// 都是调用ArrayList的方法,只不过迭代器维护了两个变量cursor和lastRet,记录操作的位置而已。
    public void add(E e) {
        checkForComodification();

        try {
            int i = cursor;
            ArrayList.this.add(i, e);
            cursor = i + 1;
            lastRet = -1;
            expectedModCount = modCount;
        } catch (IndexOutOfBoundsException ex) {
            throw new ConcurrentModificationException();
        }
    }
}

private class Itr implements Iterator<E> {
	// 下一个要返回的元素下标
    int cursor;       // index of next element to return
    // 上一个返回的元素下标
    int lastRet = -1; // index of last element returned; -1 if no such
    // 测试数组结构是否修改
    int expectedModCount = modCount;

    public boolean hasNext() {
        return cursor != size;
    }

	// 迭代器返回当前元素并向右移动
    @SuppressWarnings("unchecked")
    public E next() {
        checkForComodification();
        int i = cursor;
        if (i >= size)
            throw new NoSuchElementException();
        Object[] elementData = ArrayList.this.elementData;
        if (i >= elementData.length)
            throw new ConcurrentModificationException();
        cursor = i + 1;
        return (E) elementData[lastRet = i];
    }

	// 删除迭代器左边的元素
    public void remove() {
        if (lastRet < 0)
            throw new IllegalStateException();
        checkForComodification();

        try {
            ArrayList.this.remove(lastRet);
            cursor = lastRet;
            lastRet = -1;
            expectedModCount = modCount;
        } catch (IndexOutOfBoundsException ex) {
            throw new ConcurrentModificationException();
        }
    }

	// 对还没有迭代过的元素执行消费式函数型接口
    @Override
    @SuppressWarnings("unchecked")
    public void forEachRemaining(Consumer<? super E> consumer) {
        Objects.requireNonNull(consumer);
        final int size = ArrayList.this.size;
        int i = cursor;
        if (i >= size) {
            return;
        }
        final Object[] elementData = ArrayList.this.elementData;
        if (i >= elementData.length) {
            throw new ConcurrentModificationException();
        }
        while (i != size && modCount == expectedModCount) {
            consumer.accept((E) elementData[i++]);
        }
        // update once at end of iteration to reduce heap write traffic
        cursor = i;
        lastRet = i - 1;
        checkForComodification();
    }
	
	// 检查数组结构是否发生改变
    final void checkForComodification() {
        if (modCount != expectedModCount)
            throw new ConcurrentModificationException();
    }
}

都是调用ArrayList的方法,只不过迭代器维护了两个变量cursor和lastRet,记录操作的位置而已。

public List<E> subList(int fromIndex, int toIndex) {
    subListRangeCheck(fromIndex, toIndex, size);
    return new SubList(this, 0, fromIndex, toIndex);
}

// 判断范围是否合法。
static void subListRangeCheck(int fromIndex, int toIndex, int size) {
    if (fromIndex < 0)
        throw new IndexOutOfBoundsException("fromIndex = " + fromIndex);
    if (toIndex > size)
        throw new IndexOutOfBoundsException("toIndex = " + toIndex);
    if (fromIndex > toIndex)
        throw new IllegalArgumentException("fromIndex(" + fromIndex +
                                           ") > toIndex(" + toIndex + ")");
}

private class SubList extends AbstractList<E> implements RandomAccess {

	// 父列表
    private final AbstractList<E> parent;
    // 父列表开始下标
    private final int parentOffset;
    // 子列表据父列表的偏移量
    private final int offset;
    // 子列表的大小
    int size;

	// 构造方法要传入一个实现AbstractList接口的实现类,这里就是ArrayList。
	// 将ArrayList作为父列表
    SubList(AbstractList<E> parent,
            int offset, int fromIndex, int toIndex) {
        this.parent = parent;
        this.parentOffset = fromIndex;
        this.offset = offset + fromIndex;
        this.size = toIndex - fromIndex;
        this.modCount = ArrayList.this.modCount;
    }

    public E set(int index, E e) {
        rangeCheck(index);
        checkForComodification();
        E oldValue = ArrayList.this.elementData(offset + index);
        ArrayList.this.elementData[offset + index] = e;
        return oldValue;
    }

    public E get(int index) {
        rangeCheck(index);
        checkForComodification();
        return ArrayList.this.elementData(offset + index);
    }

    public int size() {
        checkForComodification();
        return this.size;
    }

    public void add(int index, E e) {
        rangeCheckForAdd(index);
        checkForComodification();
        parent.add(parentOffset + index, e);
        this.modCount = parent.modCount;
        this.size++;
    }

    public E remove(int index) {
        rangeCheck(index);
        checkForComodification();
        E result = parent.remove(parentOffset + index);
        this.modCount = parent.modCount;
        this.size--;
        return result;
    }

    protected void removeRange(int fromIndex, int toIndex) {
        checkForComodification();
        parent.removeRange(parentOffset + fromIndex,
                           parentOffset + toIndex);
        this.modCount = parent.modCount;
        this.size -= toIndex - fromIndex;
    }

    public boolean addAll(Collection<? extends E> c) {
        return addAll(this.size, c);
    }

    public boolean addAll(int index, Collection<? extends E> c) {
        rangeCheckForAdd(index);
        int cSize = c.size();
        if (cSize==0)
            return false;

        checkForComodification();
        parent.addAll(parentOffset + index, c);
        this.modCount = parent.modCount;
        this.size += cSize;
        return true;
    }

    public Iterator<E> iterator() {
        return listIterator();
    }

    public ListIterator<E> listIterator(final int index) {
        checkForComodification();
        rangeCheckForAdd(index);
        final int offset = this.offset;

        return new ListIterator<E>() {
            int cursor = index;
            int lastRet = -1;
            int expectedModCount = ArrayList.this.modCount;

            public boolean hasNext() {
                return cursor != SubList.this.size;
            }

            @SuppressWarnings("unchecked")
            public E next() {
                checkForComodification();
                int i = cursor;
                if (i >= SubList.this.size)
                    throw new NoSuchElementException();
                Object[] elementData = ArrayList.this.elementData;
                if (offset + i >= elementData.length)
                    throw new ConcurrentModificationException();
                cursor = i + 1;
                return (E) elementData[offset + (lastRet = i)];
            }

            public boolean hasPrevious() {
                return cursor != 0;
            }

            @SuppressWarnings("unchecked")
            public E previous() {
                checkForComodification();
                int i = cursor - 1;
                if (i < 0)
                    throw new NoSuchElementException();
                Object[] elementData = ArrayList.this.elementData;
                if (offset + i >= elementData.length)
                    throw new ConcurrentModificationException();
                cursor = i;
                return (E) elementData[offset + (lastRet = i)];
            }

            @SuppressWarnings("unchecked")
            public void forEachRemaining(Consumer<? super E> consumer) {
                Objects.requireNonNull(consumer);
                final int size = SubList.this.size;
                int i = cursor;
                if (i >= size) {
                    return;
                }
                final Object[] elementData = ArrayList.this.elementData;
                if (offset + i >= elementData.length) {
                    throw new ConcurrentModificationException();
                }
                while (i != size && modCount == expectedModCount) {
                    consumer.accept((E) elementData[offset + (i++)]);
                }
                // update once at end of iteration to reduce heap write traffic
                lastRet = cursor = i;
                checkForComodification();
            }

            public int nextIndex() {
                return cursor;
            }

            public int previousIndex() {
                return cursor - 1;
            }

            public void remove() {
                if (lastRet < 0)
                    throw new IllegalStateException();
                checkForComodification();

                try {
                    SubList.this.remove(lastRet);
                    cursor = lastRet;
                    lastRet = -1;
                    expectedModCount = ArrayList.this.modCount;
                } catch (IndexOutOfBoundsException ex) {
                    throw new ConcurrentModificationException();
                }
            }

            public void set(E e) {
                if (lastRet < 0)
                    throw new IllegalStateException();
                checkForComodification();

                try {
                    ArrayList.this.set(offset + lastRet, e);
                } catch (IndexOutOfBoundsException ex) {
                    throw new ConcurrentModificationException();
                }
            }

            public void add(E e) {
                checkForComodification();

                try {
                    int i = cursor;
                    SubList.this.add(i, e);
                    cursor = i + 1;
                    lastRet = -1;
                    expectedModCount = ArrayList.this.modCount;
                } catch (IndexOutOfBoundsException ex) {
                    throw new ConcurrentModificationException();
                }
            }

            final void checkForComodification() {
                if (expectedModCount != ArrayList.this.modCount)
                    throw new ConcurrentModificationException();
            }
        };
    }

    public List<E> subList(int fromIndex, int toIndex) {
        subListRangeCheck(fromIndex, toIndex, size);
        return new SubList(this, offset, fromIndex, toIndex);
    }

    private void rangeCheck(int index) {
        if (index < 0 || index >= this.size)
            throw new IndexOutOfBoundsException(outOfBoundsMsg(index));
    }

    private void rangeCheckForAdd(int index) {
        if (index < 0 || index > this.size)
            throw new IndexOutOfBoundsException(outOfBoundsMsg(index));
    }

    private String outOfBoundsMsg(int index) {
        return "Index: "+index+", Size: "+this.size;
    }

    private void checkForComodification() {
        if (ArrayList.this.modCount != this.modCount)
            throw new ConcurrentModificationException();
    }

    public Spliterator<E> spliterator() {
        checkForComodification();
        return new ArrayListSpliterator<E>(ArrayList.this, offset,
                                           offset + this.size, this.modCount);
    }
}

子列表完全就是一个虚假的,对子列表的操作都会直接调用父列表中的方法,在子列表中维护着父列表的开始下标,子列表的大小,子列表据父列表的偏移量,当子列表调用subList方法的时候,调用的是new SubList(this, offset, fromIndex, toIndex);

public void forEach(Consumer<? super E> action) {
    Objects.requireNonNull(action);
    final int expectedModCount = modCount;
    @SuppressWarnings("unchecked")
    final E[] elementData = (E[]) this.elementData;
    final int size = this.size;
    for (int i=0; modCount == expectedModCount && i < size; i++) {
        action.accept(elementData[i]);
    }
    if (modCount != expectedModCount) {
        throw new ConcurrentModificationException();
    }
}

对于每个元素执行消费式函数型接口。

public Spliterator<E> spliterator() {
    return new ArrayListSpliterator<>(this, 0, -1, 0);
}

static final class ArrayListSpliterator<E> implements Spliterator<E> {

    /*
     * If ArrayLists were immutable, or structurally immutable (no
     * adds, removes, etc), we could implement their spliterators
     * with Arrays.spliterator. Instead we detect as much
     * interference during traversal as practical without
     * sacrificing much performance. We rely primarily on
     * modCounts. These are not guaranteed to detect concurrency
     * violations, and are sometimes overly conservative about
     * within-thread interference, but detect enough problems to
     * be worthwhile in practice. To carry this out, we (1) lazily
     * initialize fence and expectedModCount until the latest
     * point that we need to commit to the state we are checking
     * against; thus improving precision.  (This doesn't apply to
     * SubLists, that create spliterators with current non-lazy
     * values).  (2) We perform only a single
     * ConcurrentModificationException check at the end of forEach
     * (the most performance-sensitive method). When using forEach
     * (as opposed to iterators), we can normally only detect
     * interference after actions, not before. Further
     * CME-triggering checks apply to all other possible
     * violations of assumptions for example null or too-small
     * elementData array given its size(), that could only have
     * occurred due to interference.  This allows the inner loop
     * of forEach to run without any further checks, and
     * simplifies lambda-resolution. While this does entail a
     * number of checks, note that in the common case of
     * list.stream().forEach(a), no checks or other computation
     * occur anywhere other than inside forEach itself.  The other
     * less-often-used methods cannot take advantage of most of
     * these streamlinings.
     */

    private final ArrayList<E> list;
    private int index; // current index, modified on advance/split
    private int fence; // -1 until used; then one past last index
    private int expectedModCount; // initialized when fence set

    /** Create new spliterator covering the given  range */
    ArrayListSpliterator(ArrayList<E> list, int origin, int fence,
                         int expectedModCount) {
        this.list = list; // OK if null unless traversed
        this.index = origin;
        this.fence = fence;
        this.expectedModCount = expectedModCount;
    }

    private int getFence() { // initialize fence to size on first use
        int hi; // (a specialized variant appears in method forEach)
        ArrayList<E> lst;
        if ((hi = fence) < 0) {
            if ((lst = list) == null)
                hi = fence = 0;
            else {
                expectedModCount = lst.modCount;
                hi = fence = lst.size;
            }
        }
        return hi;
    }

    public ArrayListSpliterator<E> trySplit() {
        int hi = getFence(), lo = index, mid = (lo + hi) >>> 1;
        return (lo >= mid) ? null : // divide range in half unless too small
            new ArrayListSpliterator<E>(list, lo, index = mid,
                                        expectedModCount);
    }

    public boolean tryAdvance(Consumer<? super E> action) {
        if (action == null)
            throw new NullPointerException();
        int hi = getFence(), i = index;
        if (i < hi) {
            index = i + 1;
            @SuppressWarnings("unchecked") E e = (E)list.elementData[i];
            action.accept(e);
            if (list.modCount != expectedModCount)
                throw new ConcurrentModificationException();
            return true;
        }
        return false;
    }

    public void forEachRemaining(Consumer<? super E> action) {
        int i, hi, mc; // hoist accesses and checks from loop
        ArrayList<E> lst; Object[] a;
        if (action == null)
            throw new NullPointerException();
        if ((lst = list) != null && (a = lst.elementData) != null) {
            if ((hi = fence) < 0) {
                mc = lst.modCount;
                hi = lst.size;
            }
            else
                mc = expectedModCount;
            if ((i = index) >= 0 && (index = hi) <= a.length) {
                for (; i < hi; ++i) {
                    @SuppressWarnings("unchecked") E e = (E) a[i];
                    action.accept(e);
                }
                if (lst.modCount == mc)
                    return;
            }
        }
        throw new ConcurrentModificationException();
    }

    public long estimateSize() {
        return (long) (getFence() - index);
    }

    public int characteristics() {
        return Spliterator.ORDERED | Spliterator.SIZED | Spliterator.SUBSIZED;
    }
}

之后介绍。

public boolean removeIf(Predicate<? super E> filter) {
    Objects.requireNonNull(filter);
    // figure out which elements are to be removed
    // any exception thrown from the filter predicate at this stage
    // will leave the collection unmodified
    int removeCount = 0;
    final BitSet removeSet = new BitSet(size);
    final int expectedModCount = modCount;
    final int size = this.size;
    for (int i=0; modCount == expectedModCount && i < size; i++) {
        @SuppressWarnings("unchecked")
        final E element = (E) elementData[i];
        if (filter.test(element)) {
            removeSet.set(i);
            removeCount++;
        }
    }
    if (modCount != expectedModCount) {
        throw new ConcurrentModificationException();
    }

    // shift surviving elements left over the spaces left by removed elements
    final boolean anyToRemove = removeCount > 0;
    if (anyToRemove) {
        final int newSize = size - removeCount;
        for (int i=0, j=0; (i < size) && (j < newSize); i++, j++) {
            i = removeSet.nextClearBit(i);
            elementData[j] = elementData[i];
        }
        for (int k=newSize; k < size; k++) {
            elementData[k] = null;  // Let gc do its work
        }
        this.size = newSize;
        if (modCount != expectedModCount) {
            throw new ConcurrentModificationException();
        }
        modCount++;
    }

    return anyToRemove;
}

这里出现了一种新的数据类型BitSet它和redis中的bitmap很类似,用一个位的0或1来表示。首先对缓冲数组进行遍历,若下标为i的元素满足过滤函数,则将相应位置的bitSet下标设置为1来表示满足过滤条件。removeSet.nextClearBit(i)方法是返回在指定的起始索引上或之后出现的设置为0(false)的第一位的索引。这样就将满足过滤条件的元素给过滤掉了。最后重置剩余元素和size大小。

public void replaceAll(UnaryOperator<E> operator) {
    Objects.requireNonNull(operator);
    final int expectedModCount = modCount;
    final int size = this.size;
    for (int i=0; modCount == expectedModCount && i < size; i++) {
        elementData[i] = operator.apply((E) elementData[i]);
    }
    if (modCount != expectedModCount) {
        throw new ConcurrentModificationException();
    }
    modCount++;
}

替换所有满足operator接口实现类的元素。

public void sort(Comparator<? super E> c) {
    final int expectedModCount = modCount;
    Arrays.sort((E[]) elementData, 0, size, c);
    if (modCount != expectedModCount) {
        throw new ConcurrentModificationException();
    }
    modCount++;
}

排序,Arrays底层使用的是归并排序。

完结撒花★,°:.☆( ̄▽ ̄)/$:.°★

  系统运维 最新文章
配置小型公司网络WLAN基本业务(AC通过三层
如何在交付运维过程中建立风险底线意识,提
快速传输大文件,怎么通过网络传大文件给对
从游戏服务端角度分析移动同步(状态同步)
MySQL使用MyCat实现分库分表
如何用DWDM射频光纤技术实现200公里外的站点
国内顺畅下载k8s.gcr.io的镜像
自动化测试appium
ctfshow ssrf
Linux操作系统学习之实用指令(Centos7/8均
上一篇文章      下一篇文章      查看所有文章
加:2021-11-16 19:14:17  更:2021-11-16 19:15:02 
 
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁

360图书馆 购物 三丰科技 阅读网 日历 万年历 2024年11日历 -2024/11/16 0:41:18-

图片自动播放器
↓图片自动播放器↓
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
图片批量下载器
↓批量下载图片,美女图库↓
  网站联系: qq:121756557 email:121756557@qq.com  IT数码