IT数码 购物 网址 头条 软件 日历 阅读 图书馆
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
图片批量下载器
↓批量下载图片,美女图库↓
图片自动播放器
↓图片自动播放器↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁
 
   -> 系统运维 -> Linux下大页HugePages与透明大页Transparent HugePages -> 正文阅读

[系统运维]Linux下大页HugePages与透明大页Transparent HugePages

Linux下的大页分为两种类型:标准大页(Huge Pages)和透明大页(Transparent Huge Pages)。

Huge Pages有时候也翻译成大页/标准大页/传统大页,它们都是Huge Pages的不同中文翻译名而已,顺带提一 下这个,免得有人被这些名词给混淆、误导了。Huge Pages是从Linux Kernel 2.6后被引入的。目的是使用更大 的内存页面(memory page size)以适应越来越大的系统内存,让操作系统可以支持现代硬件架构的大页面容量功能。

透明大页(Transparent Huge Pages)缩写为THP,这个是RHEL 6(其它分支版本SUSE Linux Enterprise Server 11, and Oracle Linux 6 with earlier releases of Oracle Linux Unbreakable Enterprise Kernel 2 (UEK2)) 开始引入的一个功能。具体可以参考官方文档。

这两者有啥区别呢?

这两者的区别在于大页的分配机制,标准大页管理是预分配的方式,而透明大页管理则是动态分配的方式。相信有不 少人将Huge PagesTransparent Huge Pages混为一谈。目前透明大页与传统HugePages联用会出现一些问题, 导致性能问题和系统重启。Oracle 建议禁用透明大页(Transparent Huge Pages)。在 Oracle Linux 6.5 版中, 已删除透明HugePages的支持。

标准大页(HuagePages)英文介绍:

HugePages is a feature integrated into the Linux kernel with release 2.6. It is a method to have larger
pages where it is useful for working with very large memory. It can be useful for both 32-bit and 64-bit
configurations. HugePage sizes vary from 2MB to 256MB, depending on the kernel version and the hardware
architecture. For Oracle Databases, using HugePages reduces the operating system maintenance of page 
states, and increases TLB (Translation Lookaside Buffer) hit ratio.

注意:

  1. HugePages size的大小默认为2M,这个也是可以调整的。区间范围为2MB to 256MB。
  2. 同时HuagePages是不可以被SWAP到磁盘的。
  3. Hugepages在/proc/meminfo中是被独立统计的,与其它统计项不重叠,既不计入进程的RSS/PSS中,又不计入 LRU Active/Inactive,也不会计入cache/buffer。如果进程使用了Hugepages,它的RSS/PSS不会增加。

RHEL的官方文档对传统大页(Huge Pages)和透明大页(Transparent Huge Pages)这两者的描述如下

Huge pages can be difficult to manage manually, and often require significant changes to code in order
to be used effectively. As such, Red Hat Enterprise Linux 6 also implemented the use of transparent huge
pages(THP). THP is an abstraction layer that automates most aspects of creating, managing, and using huge
pages.

THP hides much of the complexity in using huge pages from system administrators and developers. As the
goal of THP is improving performance, its developers (both from the community and Red Hat) have tested
and optimized THP across a wide range of systems, configurations, applications, and workloads. This
allows the default settings of THP to improve the performance of most system configurations. However,
THP is not recommended for database workloads.

注:

  1. THP 目前只能映射异步内存区域,比如堆和栈空间。THP是可以被SWAP到磁盘的。
  2. /proc/meminfoAnonHugePages统计的是Transparent HugePages (THP)。它与/proc/meminfo的其他统计项 有重叠,首先它被包含在AnonPages之中,而且在/proc/<pid>/smaps中也有单个进程的统计,与进程的RSS/PSS 是有重叠的,如果用户进程用到了THP,进程的RSS/PSS也会相应增加,这与Hugepages是不同的。

Transparent Huge Pages的一些官方介绍资料

The kernel will always attempt to satisfy a memory allocation using hugepages.
If no hugepages are available (due to non availability of physically continuous memory for example) 
the kernel will fall back to the regular 4KB pages. THP are also swappable (unlike hugetlbfs).
This is achieved by breaking the huge page to smaller 4KB pages, which are then swapped out normally.

内核总是试图使用hugepages来满足内存分配。如果没有hugepages可用(例如,由于没有物理上连续的内存),内核将退回到常规的4KB页面。THP也是可以交换的(与hugetlbfs不同)。这是通过将巨大的页面分解成更小的4KB页面来实现的,然后这些页面被正常地交换出去。

为什么要引入大页内存

减少TLB Miss

Linux系统中对于用户态程序可见的是Virtual Address,每一个程序都拥有自己进程的内存空间。而进程的每一个内 存的操作,都有可能被转化为对一个物理内存的操作。因此在程序运行过程中,需要将虚拟内存转换为物理内存, 因此有了一个虚拟内存物理内存的关系表,Linux就是用Page Table来管理内存,每一次内存的操作都需 要一次查表的转换的操作。为了提供高效的系统,现代CPU中就出现了TLB(Translation Lookaside Buffer) Cache用 于缓存少量热点内存地址的映射关系,帮助系统来完成内存地址的转换。然而由于制造成本和工艺的限制,响应时间需 要控制在CPU Cycle级别的Cache容量只能存储几十个对象。那么TLB Cache在应对大量热点数据Virual Address转 换的时候就显得捉襟见肘了。通常CPU的TLB Cache只有64个元素,可以通过x86info -c命令来查看(如果服务器有 多个CPU,则能看到有多个TLB Cache)。这样在默认内存页为4K时,只能缓存4K*64 = 256K的热点数据的内存地址。 但是现在的服务器动辄几百G的内存,一个进程就可能用掉10G+的内存,如果程序的热点数据比较分散,可想而知,会 产生大量的TLB Miss

随着现在硬件的升级,服务器的物理存储越来越大,动辄几百G内存的服务器,应用程序使用的内存也越来越多,特别是 存储类型和缓存类型的。从系统层面增加一个TLB Cacheentry所能对应的物理内存大小,从而增加TLB Cache所能涵 盖的热点内存数据量。假设我们把Linux Page Size增加到16M,那么同样一个容纳64个元素的TLB Cache就能顾及 64*16M = 1G的内存热点数据。这样就很大程度上减小了TLB Miss的概率。

减少内核管理内存消耗的资源

同时Linux采用分页的内存管理机制。当内存的每个页(page)很小时,内核需要耗费大量内存来维护内存的页表结构。我 们可以通过命令来查看PageTables的数量:

>$ grep PageTables /proc/meminfo
PageTables:      1573080 kB

当我们提高每个内存页的大小后,相同内存下,需要维护的页的数量就大大减小。减少了资源消耗。每个页表条目可以高 达64字节,如果我们50GB的RAM保存在页表(page table)当中,那么页表(page table)大小大约为800MB,实际上对 于lowmem来说,考虑到lowmem的其他用途,880MB大小是不合适的(在2.4内核当中,page tabel在低于2.6的内核当中不 是必须的),lowmem中通过256MB的hugepages访问95%的内存时,可以使用大约40MB的页表。

减少页表查询的耗时

缩小PageTables大小的同时也就减少了查表的耗时。当TLB Miss之后,就会去查询页表,我们不可能保证每次都能命 中TLB Cache的,减少页表查询的耗时,就加速了程序访问虚拟内存的速度,从而提高整体性能。

查看是否开启HugePages与Transparent HugePages

查看HugePages的配置

# 查看标准大页(HugePages)的页面大小:
>$ grep Hugepagesize /proc/meminfo
Hugepagesize:     2048 kB

# 确认HugePages是否配置、并在使用的方法:
>$ cat /proc/sys/vm/nr_hugepages
0                                    # 0 意味着没有设置使用

>$ grep -i HugePages_Total /proc/meminfo
HugePages_Total:     0               # 0 意味着没有设置使用

启用HugePages

使用Hugepages有三种方式:

  1. mount一个特殊的hugetlbfs文件系统,在上面创建文件,然后用mmap()进行访问,如果要用read()访问 也是可以的,但是write()不行。为了方便,可以直接使用libhugetlbfs, 其完成了这一系列操作,同时对malloc/free进行了重载,使用户可以直接在hugetlbfs上分配内存。
  2. 通过shmget/shmat也可以使用Hugepages,调用shmget申请共享内存时要加上SHM_HUGETLB标志。
  3. 通过mmap(),调用时指定MAP_HUGETLB标志也可以使用Huagepages7

查看Transparent Hugepages开启

>$ cat /sys/kernel/mm/transparent_hugepage/enabled
[always] madvise never
  • [always] 表示已经开启
  • [never] 表示透明大页禁用
  • [madvise] 表示只在MADV_HUGEPAGE标志的VMA中使用THP

同时也可以在内核启动参数进行配置:

  • "transparent_hugepage=always"
  • "transparent_hugepage=madvise"
  • "transparent_hugepage=never"

修改Transparent Hugepages配置

THP的开启、关闭只影响修改以后的程序行为,因此当修改THP配置后,应该重启相关程序,使其使用新的配置。

echo always > /sys/kernel/mm/transparent_hugepage/enabled
echo madvise > /sys/kernel/mm/transparent_hugepage/enabled
echo never > /sys/kernel/mm/transparent_hugepage/enabled

为了为用户提供更多的THP使用,内核会对内存进行碎片整理,将连续的普通page合并为THP。 当然碎片整理也有开关可以控制:

  • always:意思是当用户分配THP内存时,当没有足够THP内存可用时,请求会阻塞住,然后进行内存回收、 压缩,然后尽最大努力分配出一个THP。使用这个选项,显然会给程序带来不确定的延时。
  • defer:Linux4.6开始支持该项。意思是程序会唤醒内核进程kswapd异步回收内存,同时唤醒kcompactd异步压 缩合并内存,从而避免了当分配THP时,连续内存不足2m时,同步压缩内存带来的进程停顿3
  • defer+madvise:Linux4.11开始支持该项。意思是当THP内存不足时,用户请求分配THP内存时会直接回收、合 并内存,就像always选项一样,但是只针对调用madvise(MADV_HUGEPAGE)的内存区域。其他区域的内存会像defer 配置一样运作。
  • madvise:当用户分配THP内存失败时,只对调用madvise(MADV_HUGEPAGE)的内存区域进行内存回收、合并。
  • never:关闭用户分配THP内存失败时的回收机制。
echo always > /sys/kernel/mm/transparent_hugepage/defrag
echo defer > /sys/kernel/mm/transparent_hugepage/defrag
echo defer+madvise > /sys/kernel/mm/transparent_hugepage/defrag
echo madvise > /sys/kernel/mm/transparent_hugepage/defrag
echo never > /sys/kernel/mm/transparent_hugepage/defrag

huge zero page是内核为THP读请求时的一个优化,可以决定是否开启:

echo 0 > /sys/kernel/mm/transparent_hugepage/use_zero_page
echo 1 > /sys/kernel/mm/transparent_hugepage/use_zero_page

THP被设置为always或者madvise时,khugepaged会自动开启,当THP被设置为never时,khugepaged 会被自动关闭。khugepaged周期性运行以回收、合并内存。用户不想在分配内存时回收、合并内存时,至少应该 开启khugepaged来回收、合并内存。当然khugepaged也可以被关闭:

echo 0 > /sys/kernel/mm/transparent_hugepage/khugepaged/defrag
echo 1 > /sys/kernel/mm/transparent_hugepage/khugepaged/defrag

同时也可以通过/sys/kernel/mm/transparent_hugepage/khugepaged/pages_to_scan控制khugepaged每次扫描多 少个page

通过/sys/kernel/mm/transparent_hugepage/khugepaged/scan_sleep_millisecs控制khugepaged每次扫描的间隔, 单位是毫秒。当其被设置为0是,会使一个CPU核使用率达到100%。

通过/sys/kernel/mm/transparent_hugepage/khugepaged/alloc_sleep_millisecs控制khugepaged内部每次分配 失败时SLEEP多久再进行一下次尝试,通常不需要调整。

还有一些其他参数,就不一一细讲了。

Transparent HugePages的缺点

当然使用Transparent HugePages也有一些潜在问题:

内存额外开销增加

当内存的一个page增加到2MB时,即使我们使用很小的一点内存时,也会消耗一个page,造成2MB的内存开销。 这样是一个page4k时的512倍。当然在现代服务器上,可以忽略不计。有时也会也会造成严重的影响,如果内存 使用的比较琐碎,造成大量2MB的page都无法真正释放,可能会造成进程使用内存过量,被OOM Killer干掉。

暂停以及CPU开销

  1. Transparent HugePages的2MB的page被SWAP到磁盘时,需要被重新划分为4K的page,这时需要额外的 CPU开销,以及更高的IO延时。当然,在现代高能性服务器上,通常会选择禁用SWAP。
  2. 通常Linux内核还会有一个叫做khugepaged的进程,它会一直扫描所有进程占用的内存,在可能的情况下会把 4Kpage交换为Transparent HugePages,在这个过程中,对于操作的内存的各种分配活动都需要各种内存锁,直 接影响程序的内存访问性能,并且,这个过程对于应用是透明的,在应用层面不可控制,对于专门为4Kpage优化 的程序来说,可能会造成随机的性能下降现象。幸好的是,我们可以通过echo 0 > /sys/kernel/mm/transparent_hugepage/khugepaged/defragecho never > /sys/kernel/mm/transparent_hugepage/defrag来关闭这个功能。

是否需要开启HugePages/Transparent HugePages

既然开启HugePages/Transparent HugePages又有优点,同时又可能带来不确定的缺点。而且大多人对HugePages/ Transparent HugePages都带有负面看法,建议我们关闭HugePages/Transparent HugePages。 那我们到底是否需要开启HugePages或者Transparent HugePages么?

这个问题当然没有确定的答案,因此我们需要先各自的项目中进行测试、测量,拿数据说话,看开启HugePages或者 Transparent HugePages是否在该项目中是否能带来好处。

简单的方法

最简单的方法就是,在项目中分别开启、关闭HugePages/Transparent HugePages的情况下,进行压测,来判断该 项目能否受益于HugePages/Transparent HugePages

如果没有明显的受益时,使用的是Linux4.6之前内核的场景最好还是关闭HugePages/Transparent HugePages,避 免其带来的不确定性。当系统内核高于Linux4.6,可以尝试启动Transparent HugePages,同时将defrag调为defer

复杂的方法

复杂的方法当然就是刨根问底儿,通过各种工具来分析程序的实际运行过程,看HugePages/Transparent HugePages 是否对程序带来正收益。

测量TLB MISS

我们可以使用perf来分析开启/关闭HugePages/Transparent HugePages时,TLB miss的情况是否有明显改变:

dTLB-load-misses(dTLB是数据转换后援缓存)和iTLB-load-misses(iTLB是指令转换后援缓存)等指标值,load表示读指 令,store表示写操作:

# 每秒钟输出一次dTLB情况
>$ perf stat -e dTLB-loads,dTLB-load-misses,dTLB-stores,dTLB-store-misses -a -I 1000
#           time             counts unit events
     1.000458338      2,404,619,383      dTLB-loads                [100.00%]
     1.000458338         12,025,384      dTLB-load-misses          [100.00%]
     1.000458338      1,429,855,652      dTLB-stores               [100.00%]
     1.000458338          2,294,918      dTLB-store-misses
     2.001339288      2,406,698,800      dTLB-loads
     2.001339288         11,644,332      dTLB-load-misses
     2.001339288      1,476,477,700      dTLB-stores
     2.001339288          4,200,652      dTLB-store-misses

# 查看指定进程的dTLB情况
>$ perf stat -e dTLB-loads,dTLB-load-misses,dTLB-stores,dTLB-store-misses -a -p <pid>
# CTRL-C退出,可以看到dTLB命中情况
 Performance counter stats for process id '4577':

     4,579,026,997      dTLB-loads
        22,869,795      dTLB-load-misses          #    0.50% of all dTLB cache hits
     2,773,838,918      dTLB-stores
         6,483,562      dTLB-store-misses

       2.113034900 seconds time elapsed

# 每秒钟输出一次iTLB情况
>$ perf stat -e iTLB-load,iTLB-load-misses -a -I 1000
#           time             counts unit events
     1.000272672         97,787,479      iTLB-load                 [100.00%]
     1.000272672          4,014,902      iTLB-load-misses
     2.000750667         92,962,955      iTLB-load
     2.000750667          3,707,801      iTLB-load-misses

# 查看指定进程的iTLB情况
>$ perf stat -e iTLB-load,iTLB-load-misses -a -p 4577
# CTRL-C退出,可以看到iTLB命中情况
 Performance counter stats for process id '4577':

     1,794,122,924      iTLB-load                                                    [100.00%]
        71,716,505      iTLB-load-misses          #    4.00% of all iTLB cache hits

      19.078375072 seconds time elapsed

测量内核函数

同时,我们还可以使用SystemTap来测量内核函数,来判断THP等是否会带来影响15

首先我们感兴趣的函数是__alloc_pages_slowpath, 该函数会在我们分配内存时,没有连续2m内存也可用时被调用,其会调用内存页压缩/回收逻辑,可能会引起进程的停 顿。

第二个我们感兴趣的函数时khugepaged_scan_mm_slot, 其会被内核线程khugepaged调用,它会扫描内存,将常规页合并成hugepage,这个过程中会对内存页进行锁定,如果 其耗时较长的话,也可能引起程序的停顿。

因此我们可以使用一下脚本进行测量这2个函数的耗时:

#! /usr/bin/env stap
global start, intervals

probe $1 { start[tid()] = gettimeofday_us() }
probe $1.return
{
  t = gettimeofday_us()
  old_t = start[tid()]
  if (old_t) intervals <<< t - old_t
  delete start[tid()]
}

probe timer.ms($2)
{
    if (@count(intervals) > 0)
    {
        printf("%-25s:\n min:%dus avg:%dus max:%dus count:%d \n", tz_ctime(gettimeofday_s()),
             @min(intervals), @avg(intervals), @max(intervals), @count(intervals))
        print(@hist_log(intervals));
    }
}

然后执行:

>$ ./func_time_stats.stp 'kernel.function("__alloc_pages_slowpath")' 1000

参考:

  1. Linux传统Huge Pages与Transparent Huge Pages再次学习总结
  2. /PROC/MEMINFO之谜
  3. 20 years of Linux Virtual Memory
  4. Huge Page 是否是拯救性能的万能良药?
  5. Myths and common misconceptions about (transparent) huge pages for Oracle databases
  6. kernel documentation hugetlbpage
  7. Linux下试验大页面映射
  8. Transparent Hugepage Support
  9. Adding a huge zero page
  10. Transparent Huge Pages and Alternative Memory Allocators: A Cautionary Tale
  11. Linux Transparent Huge Pages, JEMalloc and NuoDB
  12. Performance Issues with Transparent Huge Pages
  13. MemSQL: Disable Transparent Huge Pages
  14. mongodb: Disable Transparent Huge Pages
  15. Transparent Hugepages: measuring the performance impact
  系统运维 最新文章
配置小型公司网络WLAN基本业务(AC通过三层
如何在交付运维过程中建立风险底线意识,提
快速传输大文件,怎么通过网络传大文件给对
从游戏服务端角度分析移动同步(状态同步)
MySQL使用MyCat实现分库分表
如何用DWDM射频光纤技术实现200公里外的站点
国内顺畅下载k8s.gcr.io的镜像
自动化测试appium
ctfshow ssrf
Linux操作系统学习之实用指令(Centos7/8均
上一篇文章      下一篇文章      查看所有文章
加:2022-12-25 11:43:44  更:2022-12-25 11:45:15 
 
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁

360图书馆 购物 三丰科技 阅读网 日历 万年历 2024年12日历 -2024/12/28 4:20:51-

图片自动播放器
↓图片自动播放器↓
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
图片批量下载器
↓批量下载图片,美女图库↓
  网站联系: qq:121756557 email:121756557@qq.com  IT数码
数据统计